Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ

Директор по образовательной

деятельности

С.Т. Князев

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1164095	Системы принятия решений на основе искусственного
	интеллекта

Перечень сведений о рабочей программе модуля	Учетные данные	
Образовательная программа	Код ОП	
Прикладной искусственный интеллект	09.03.03	
Направление подготовки	Код направления и уровня подготовки	
Прикладная информатика	09.03.03	

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Аксенов	кандидат	Доцент	департамент
	Константин	технических		информационных
	Александрович	наук, доцент		технологий и
				автоматики

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Системы принятия решений на основе искусственного интеллекта

1.1. Аннотация содержания модуля

Модуль «Системы принятия решений на основе искусственного интеллекта» рассматривает современные методы построения систем поддержки принятия решений (СППР). Рассматриваются базовые понятия и концепции построения СППР, алгоритмы классического машинного обучения в приложениях к СППР, системы на основе глубоких нейронных сетей. Также в модуле рассматриваются вопросы, связанные со сбором и анализом больших данных в целях принятия решений в различных приложениях, например, финансовых, промышленных и медицинских. При прохождении модуля будут даны практические примеры построения СППР и показаны особенности их работы.

1.2. Структура и объем модуля

Таблица 1

Nº	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Системы принятия решений на основе искусственного интеллекта	3
	ИТОГО по модулю:	3

1.3. Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	Не предусмотрены
Постреквизиты и кореквизиты	Не предусмотрены
модуля	

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Индикаторы достижения компетенции	Планируемые результаты обучения
1	2	3	4
Системы принятия решений на	ПК-2. Способен разрабатывать и тестировать	ПК-2.1. Разрабатывает приложения систем искусственного интеллекта	ПК-2.1. 3-1. Знает современные языки программирования, библиотеки и программные
основе искусствен	программные компоненты решения задач в системах		платформы для функционального, логического, объектно-ориентированного

ного интеллекта	искусственного интеллекта		программирования приложений систем искусственного интеллекта (Python, R, C++, C#)
			ПК-2.1. У-1. Умеет разрабатывать программные приложения систем искусственного интеллекта, с использованием современных языков программирования, библиотек и программных платформ функционального, логического, объектноориентированного программирования (Руthon, R. C++, C#)
	ПК-8. Способен создавать и внедрять одну или несколько сквозных цифровых субтехнологий искусственного интеллекта	ПК-8.1. Участвует в реализации проектов в области сквозной цифровой субтехнологии «Рекомендательные системы и системы поддержки принятия решений»	ПК-8.1. 3-1. Знает фундаментальные правила построения рекомендательных систем и систем поддержки принятия решений, основанных на интеллектуальных принципах, методы и подходы к планированию и реализации проектов по созданию систем искусственного интеллекта на основе сквозной цифровой субтехнологии «Рекомендательные системы и системы поддержки принятия решений»
			ПК-8.1. У-1. Умеет применять методы и подходы к планированию и реализации проектов по созданию и поддержке системы искусственного интеллекта на основе сквозной цифровой субтехнологии «Рекомендательные системы и системы поддержки принятия решений»

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной форме.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Системы принятия решений на основе искусственного интеллекта

Рабочая программа дисциплины составлена авторами:

N	№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
	1	Аксенов Константин Александрович	кандидат технических наук, доцент	Доцент	департамент информационных технологий и
					автоматики

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Аксенов Константин Александрович, Доцент, Департамент информационных технологий и автоматики
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания; Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела , темы	Раздел, тема дисциплины*	Содержание
1	Ситуационное управление организационно- техническими системами (ОТС). Рассмотрение организационно-технических систем с точки зрения	Понятия системы, цели системы, задачи системы, организационно-технической системы, ситуации системы. Принцип ситуационного управления. Ресурс, процесс преобразования ресурсов. Примеры процессов преобразования ресурсов. Типы соединений элементов процессов: последовательное, параллельное, с обратной связью.
2	Процесс принятия решений в организационно-технических системах управления. Описание задачи управления и моделирования процессами предприятия	Характеристики организационно-технических систем. Особенностей процессов принятия решений. Структура и функции системы поддержки принятия решений (СППР). Основные трудности применения СППР. Управление предприятием. Типы групп данных, используемые для управления предприятием. Место систем поддержки принятия решений в процессе управления предприятием. СППР в стратегическом управлении предприятием, система сбалансированных показателей (Balanced ScoreCard, BSC).
3	Научные основы систем поддержки принятия решений. Системный анализ ОТС. Методы проектирования ОТС	Место системного анализа в разработке систем поддержки принятия решений. Поле знаний. Дуальная стратегия проектирования. Графические нотации описания процессов предприятия (IDEF0, IDEF3, EPC, DFD, модели системной динамики). Структурный и объектно-ориентированный

		подход. Язык UML (диаграммы прецедентов, классов, последовательности). Графическая нотация процессов преобразования ресурсов и системные графы высокого уровня иерархии.
4	Имитационное моделирование. Экспертное и ситуационное моделирование.	Метод имитационного моделирования, модели формализации дискретных процессов (сети Петри, модели массового обслуживания). Методы экспертного и ситуационного моделирования. Основные элементы экспертной системы (база знаний, машина вывода, подсистема объяснения, извлечения знаний и обучения). Ситуационные модели.
5	Модели представления знаний. Применение концептуального и объектноориентированного моделирования, фреймовых моделей для построения прикладных СППР и интеллектуальных систем	Фреймы (слоты, присоединенные процедуры), семантические сети, продукции. Концептуальное, объектно-ориентированное моделирование, визуализация вывода на знаниях. Фреймовый подход Швецова А.Н. Диаграммы и деревья поиска решений
6	Мультиагентное моделирование. Сети потребностей и возможностей.	Интеллектуальный агент, мультиагентная система. Мультиагентная модель процесса преобразования ресурсов. Сети потребностей и возможностей. Процедура матчинга.
7	Системы ситуационного моделирования. Обзор систем динамического моделирования ситуаций.	Ситуационные центры, системы ситуационного отображения информации, системы динамического моделирования ситуаций (СДМС) и аналитические ситуационные системы. Примеры СДМС ARIS ToolSet, AnyLogic, G2.
8	Гибридная архитектура мультиагентной системы процессов преобразования ресурсов. Системы поддержки принятия решений семейства BPsim. Примеры использования систем поддержки принятия решений BPsim.	Архитектуры реактивного, интеллектуального и гибридного агента. Система динамического моделирования ситуаций BPsim.MAS, система поддержки принятия решений BPsim.DSS. Логистика, маркетинг, мультисервисные сети связи.
9	Применение методов машинного обучения в приложениях к СППР. Системы принятия решений на основе глубоких нейронных сетей.	Сбор и анализ больших данных в целях принятия решений. Применение машинного обучения и нейронных сетей в СППР. Применение автоматизированной системы выпуска металлургической продукции для сбора и анализа больших данных в целях принятия решений. Применение методов искусственного интеллекта в вопросно-ответной системе «Твин».

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности Технология самостоятельной работы	ПК-8. Способен создавать и внедрять одну или несколько сквозных цифровых субтехнологий искусственного интеллекта	ПК-8.1. З-1. Знает фундаментальные правила построения рекомендательных систем и систем поддержки принятия решений, основанных на интеллектуальных принципах, методы и подходы к планированию и реализации проектов по созданию систем искусственного интеллекта на основе сквозной цифровой субтехнологии «Рекомендательны е системы поддержки принятия решений»

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Системы принятия решений на основе искусственного интеллекта

Электронные ресурсы (издания)

- 1. Березовская, Е. А.; Системы поддержки принятия решений : учебное пособие.; Южный федеральный университет, Ростов-на-Дону, Таганрог; 2020; https://biblioclub.ru/index.php?page=book&id=612165 (Электронное издание)
- 2. Моделирование и принятие решений в организационно-технических системах: учебное пособие. В 2 ч. Ч.1. / К.А. Аксенов, Н.В. Гончарова. Екатеринбург: УрФУ, 2015. 104 с. ISBN 978-5-7996-1321-1. http://hdl.handle.net/10995/30845
- 3. Моделирование и принятие решений в организационно-технических системах: учебное пособие: В 2 ч. / К.А. Аксенов, Н.В. Гончарова, О.П. Аксенова. Екатеринбург: УрФУ, 2015. Ч. 2. 120 с. ISBN 978-5-7996-1322-8. http://hdl.handle.net/10995/30846

- 4. Мультиагентный метод анализа и синтеза информационных систем: учебное пособие / И.А. Спицина, К.А. Аксенов. Екатеринбург: Изд-во Урал.ун-та, 2017. 92 с. http://hdl.handle.net/10995/48968
- 5. Аксенов К.А., Доросинский Л.Г., Гончарова Н.В. Системы поддержки принятия решений в 2 ч. Часть 1 : учебное пособие / Москва, Юрайт. 2020. Сер. 76. Высшее образование. Сер. 11 Университеты России (1-е изд.). 103 с. ISBN: 978-5-534-07640-0. https://elibrary.ru/item.asp?id=43016216
- 6. Аксенов К.А., Доросинский Л.Г., Гончарова Н.В., Аксенова О.П. Системы поддержки принятия решений в 2 ч. Часть 2 : учебное / Москва, Юрайт. 2020. Сер. 76. Высшее образование. Сер. 11 Университеты России (1-е изд.). 126 с. ISBN: 978-5-534-07642-4. https://elibrary.ru/item.asp?id=43016232

Профессиональные базы данных, информационно-справочные системы

- 1) Единое окно доступа к образовательным ресурсам. Раздел Информатика и информационные технологии http://window.edu.ru/catalog/p_rubr=2.2.75.6
- 2) Зональная научная библиотека УрФУ http://lib.urfu.ru
- 3) Научная электронная библиотека Elibrary.ru https://www.elibrary.ru/
- 4) Электронная библиотечная сеть "Лань" http://e.lanbook.com/
- 5) Портал информационно-образовательных ресурсов УрФУ http://study.urfu.ru/

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1) Государственная публичная научно-техническая библиотека http://www.gpntb.ru
- 2) Список библиотек, доступных в Интернет и входящих в проект «Либнет» http://www.valley.ru/-nicr/listrum.htm
- 3) Российская национальная библиотека http://www.rsl.ru
- 4) Свободная энциклопедия Википедия https://ru.wikipedia.org/
- 5) Портал национального общества имитационного моделирования http://simulation.su/
- 6) Портал российской ассоциации искусственного интеллекта https://raai.org/

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Системы принятия решений на основе искусственного интеллекта

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Microsoft Windows 8.1 Pro 64- bit RUS OLP NL Acdmc
2	Лабораторные занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	SQL Svr Standard Core ALNG LicSAPk MVL 2Lic CoreLic EES Microsoft Windows 8.1 Pro 64- bit RUS OLP NL Acdmc СУБД Microsoft SQL Server 2012 или более новая
3	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	SQL Svr Standard Core ALNG LicSAPk MVL 2Lic CoreLic EES Microsoft Windows 8.1 Pro 64- bit RUS OLP NL Acdmc СУБД Microsoft SQL Server 2012 или более новая
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Microsoft Windows 8.1 Pro 64- bit RUS OLP NL Acdmc

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Системы принятия решений на основе искусственного интеллекта

Код модуля 1164095(1)

Модуль

Системы принятия решений на основе искусственного интеллекта

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Аксенов Константин Александрович	кандидат технических наук, доцент	Доцент	департамент информационных технологий и автоматики

Авторы:

• Аксенов Константин Александрович, Доцент, Департамент информационных технологий и автоматики

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Системы принятия решений на основе искусственного интеллекта

1.	Объем дисциплины в зачетных единицах	3	
2.	Виды аудиторных занятий	Лекции Лабораторные занятия	
3.	Промежуточная аттестация	Экзамен	
4.	Текущая аттестация	Контрольная работа	1
		Домашняя работа	1

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Системы принятия решений на основе искусственного интеллекта

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Код и наименование компетенции	Индикаторы достижения компетенции	Планируемые результаты обучения 3	Контрольно- оценочные средства для оценивания достижения результата обучения по дисциплине	
ПК-2.	ПК-2.1.	ПК-2.1. 3-1. Знает	Домашняя	
Способен	Разрабатывает	современные языки	работа	
разрабатывать	приложения систем	программирования,	Контрольная	
и тестировать	искусственного	библиотеки и	работа	
программные интеллекта		программные платформы	Лабораторные	
компоненты		для функционального,	занятия	
решения задач		логического, объектно-	Лекции	
в системах		ориентированного	Экзамен	
искусственного		программирования		
интеллекта		приложений систем		

	T		
		искусственного	
		интеллекта (Python, R,	
		C++, C#)	
		ПК-2.1. У-1. Умеет	
		разрабатывать	
		программные приложения	
		систем искусственного	
		интеллекта, с	
		использованием	
		1	
		программирования,	
		библиотек и программных	
		платформ	
		функционального,	
		логического, объектно-	
		ориентированного	
		программирования	
		(Python, R. C++, C#)	
ПК-8.	ПК-8.1. Участвует в	ПК-8.1. 3-1. Знает	Домашняя
Способен	реализации проектов	фундаментальные правила	работа
	в области сквозной	построения	Контрольная
создавать и	цифровой	рекомендательных систем	работа
внедрять одну	субтехнологии	и систем поддержки	Лабораторные
или несколько	«Рекомендательные	<u> </u>	занятия
сквозных			Лекции
цифровых	системы и системы	основанных на	· ·
	поддержки принятия	интеллектуальных	Экзамен
субтехнологий	решений»	принципах, методы и	
искусственного		подходы к планированию	
интеллекта		и реализации проектов по	
		созданию систем	
		искусственного	
		интеллекта на основе	
		сквозной цифровой	
		субтехнологии	
		«Рекомендательные	
		системы и системы	
		поддержки принятия	
		решений»	
		ПК-8.1. У-1. Умеет	
		применять методы и	
		подходы к планированию	
		и реализации проектов по	
		-	
		•	
		системы искусственного	
		интеллекта на основе	
		сквозной цифровой	
		субтехнологии	
		«Рекомендательные	
		системы и системы	
		поддержки принятия	
		решений»	

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

1. Лекции: коэффициент значимости совокупных результатов лекционных занятий – 0.6				
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах		
домашняя работа	7,14	50		
контрольная работа	7,7	50		
Весовой коэффициент значимости результатов текущей аттес	стации по лек	циям – 0.5		
Промежуточная аттестация по лекциям – экзамен Весовой коэффициент значимости результатов промежуточно – 0.5				
2. Практические/семинарские занятия: коэффициент значим результатов практических/семинарских занятий – не предусм		ных		
Текущая аттестация на практических/семинарских занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах		
Весовой коэффициент значимости результатов текущей аттес практическим/семинарским занятиям— не предусмотрено				
Промежуточная аттестация по практическим/семинарским з Весовой коэффициент значимости результатов промежуточно практическим/семинарским занятиям— не предусмотрено		і по		
3. Лабораторные занятия: коэффициент значимости совокуп лабораторных занятий —0.4	ных результа	гов		
Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах		
выполнение и защита лабораторных работ	7,16	100		
Весовой коэффициент значимости результатов текущей аттестации по лабораторным занятиям -1				
Промежуточная аттестация по лабораторным занятиям —нет Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям — не предусмотрено 4. Онлайн-занятия: коэффициент значимости совокупных результатов онлайн-занятий —не предусмотрено				
Текущая аттестация на онлайн-занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах		

Весовой коэффициент значимости результатов текущей аттестации по онлайнзанятиям -не предусмотрено

Промежуточная аттестация по онлайн-занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по онлайнзанятиям – не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

Текущая аттестация выполнения курсовой работы/проекта	Сроки – семестр, учебная неделя	Максимальная оценка в баллах			
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта— не предусмотрено					
Весовой коэффициент промежуточной аттестации выполнения курсовой работы/проекта— защиты — не предусмотрено					

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4 Критерии оценивания учебных достижений обучающихся

Результаты обучения	Критерии оценивания учебных достижений, обучающихся на соответствие результатам обучения/индикаторам		
Знания	Студент демонстрирует знания и понимание в области изучения на уровне указанных индикаторов и необходимые для продолжения обучения и/или выполнения трудовых функций и действий, связанных с профессиональной деятельностью.		
Умения	Студент может применять свои знания и понимание в контекстах, представленных в оценочных заданиях, демонстрирует освоение умений на уровне указанных индикаторов и необходимых для продолжения обучения и/или выполнения трудовых функций и действий, связанных с профессиональной деятельностью.		
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне указанных индикаторов.		
Другие результаты	Студент демонстрирует ответственность в освоении результатов обучения на уровне запланированных индикаторов. Студент способен выносить суждения, делать оценки и формулировать выводы в области изучения. Студент может сообщать преподавателю и коллегам своего уровня собственное понимание и умения в области изучения.		

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)						
No	Содержание уровня Шкала оценивания						
п/п	выполнения критерия	Традиционная		Качественная			
	оценивания результатов	характеристика	уровня	характеристи			
	обучения			ка уровня			
	(выполненное оценочное						
	задание)		Г				
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)			
	(индикаторы) достигнуты в	(80-100 баллов)					
	полном объеме, замечаний нет						
2.	Результаты обучения	Хорошо		Средний (С)			
	(индикаторы) в целом	(60-79 баллов)					
	достигнуты, имеются замечания,						
	которые не требуют						
	обязательного устранения						
3.	Результаты обучения	Удовлетворительно		Пороговый (П)			
	(индикаторы) достигнуты не в	(40-59 баллов)					
	полной мере, есть замечания						
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный			
	не соответствует индикаторам,	НО	зачтено	(H)			
	имеются существенные ошибки и	(менее 40 баллов)					
	замечания, требуется доработка						
5.	Результат обучения не достигнут,	Недостаточно свидетельств		Нет результата			
	задание не выполнено	для оценивания					

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Лабораторные занятия

Примерный перечень тем

- 1. Методы системного анализа. Описание процессов.
- 2. Описание концептуальной модели предметной области. Описание продукционной базы знаний агента.
 - 3. Построение диаграммы и дерева поиска решения.
 - 4. Выбор типа СППР и проектирование структуры.
 - 5. Изучение СППР (ЭС, СИМ, СТЭП, СДМС).

- 6. Разработка динамической мультиагентной модели процесса преобразования ресурсов в СДМС BPsim.MAS
- 7. Разработка прототипа фреймовой экспертной системы в СТЭП BPsim.MSN. Проектирование концептуальной модели предметной области. Программирование вывода фреймовой системы с использованием SQL-запросов.
- 8. Разработка прототипа гибридной СППР на основе СДМС BPsim.MAS и СТЭП BPsim.DSS
 - 9. Разработка вопросно-ответной системы
 - 10. Применение нейронных сетей для задачи принятия решений
 - 11. Применение методов машинного обучения для принятия решений

LMS-платформа – не предусмотрена

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа

Примерный перечень тем

- 1. Описание бизнес-процесса в виде диаграммы потоков данных.
- 2. Построение базы правил (базы знаний) продукционной системы.
- 3. Построение концептуальной модели предметной области.
- 4. Описание бизнес-процесса в нотации мультиагентного процесса преобразования ресурсов.
 - 5. Формирование команды по разработке и внедрению СППР. Распределение ролей.
 - 6. Построение диаграммы поиска решений.
- 7. Определение концепции СППР (анализ предметной области, выбор математического и алгоритмического обеспечения). Определение задач и их распределение внутри команды. Подготовка проекта технического задания.

Примерные задания

Вопросы по темам:

- -Классификация СППР.
- -Классификация систем ситуационного моделирования.
- -Фреймовая модель представления знаний: понятия слота, присоединенной процедуры (демона), фрем-концепта и фрейм-экземпляра. Вывод на фреймах.
 - -Продукционная модель представления знаний, прямой и обратный вывод.
- -Имитационное моделирование (системная динамика, автоматы, системы массового обслуживания, сети Петри), алгоритмы продвижения по модельному времени.
 - -Графические нотации описания бизнес-процессов (IDEF0, IDEF3, DFD).
- -Основные диаграммы языка UML (диаграммы классов, прецедентов, последовательности).
 - -Архитектура автоматизированной системы выпуска металлургической продукции.
 - -Вопросно-ответная система ТВИН

- -Методы машинного обучения в приложениях к СППР.
- -Системы принятия решений на основе глубоких нейронных сетей.
- -Сбор и анализом больших данных в целях принятия решений (в различных приложениях, например, финансовых, промышленных и медицинских)

LMS-платформа – не предусмотрена

5.2.2. Домашняя работа

Примерный перечень тем

- 1. Концептуальное проектирование и разработка прототипа СППР для заданной предметной области:
- 2. Описание основных процессов.
- 3. Построение диаграммы прецедентов.
- 4. Построение диаграммы классов.
- 5. Построение диаграммы последовательности.
- 6. Построение дерева поиска решений.
- 7. Выбор и обоснование модели представления знаний (если СППР ориентирована на работу со знаниями).
- 8. Выбор и обоснование алгоритма \ метода решения задачи (машинное обучение; ситуационное управление; имитационное, экспертное, агентное, нейросетевое моделирование).
- 9. Программная реализация прототипа СППР.
- 10. Поиск и отбор исходных данных и примеров решения задач.
- 11. Демонстрация программной реализации СППР на примерах решения задач.
- 12. Оценка и анализ качества решений.

Примерные задания

Задание 2023 Аб. Стройсеть

(Имитационное и/или мультиагентное моделирование)

Имеется 20 магазинов сети строительных магазинов. Территориально магазины располагаются:

- в г. Екатеринбург 7 магазинов;
- в г. Каменск-Уральский 4 магазина;
- в г. H. Тагил- 5 магазинов;
- в городах спутниках г. Екатеринбурга 4 магазина.

Раз в сутки на базу приходит заказ из магазина (магазинов) г. Екатеринбург, раз в 2 дня из г. Нижний Тагил, раз в 4 дня из городов спутников г. Екатеринбург, раз в 3 дня из г. Каменск-Уральский.

Магазины находят на следующем расстоянии от базы:

- магазины г. Екатеринбурга от 10 до 30 км;
- магазины г. Нижний Тагил от 130 до 140 км;
- магазины г. Каменск-Уральский от 125 до 135 км.

Магазины городов-спутников Екатеринбурга от 10 км до 30 км.

В автопарке базы имеется 20 машин средней грузоподъемности. После появления заявки на товар на базе, автомобиль едет за товаром на базу. В модели предусмотрено изменять скорость движения автомобилей.

Весь товар находится на нескольких складах. Тяжелый негабарит на первом и втором складе, тяжелые европалеты на третьем, сантехника на четвертом, легкие европалеты на пятом).

После того как грузовик подъехал на парковку к складу, к нему подходит кладовщик и закрепляет за машиной автопогрузчик, после загрузки товаром автомобиля кладовщик выдает накладную водителю. Этап погрузки происходит следующим образом: имеется 2 грузчика, они могут загружать одновременно 2 средних грузовика (склад имеет 2 поста погрузки). Время загрузки машины 1 час.

Весь товар загружается по следующим правилам:

- сперва тяжелый негабарит (не больше 8 листов);
- сантехника, не больше 2 ванн в один автомобиль;
- европалеты на больше 200 кг;
- легкие европалеты не больше 100 кг;

Если автомобиль приехал, а грузчики еще не освободились, то грузовик становится в очередь на парковку рядом со складом.

Раз в несколько дней на склады приезжает «<u>Камаз</u>» и загружает склады товаром. При этом <u>Камаз</u> перекрывает полностью склад (оба поста) на 3 часа, средние грузовики в это время не могут подъехать к складу и загружаться.

У машин и грузчиков 12 часовой рабочий день. После того как машины загрузились на складе они везут товары в магазины и возвращаются обратно на базу (если остались позиции в заявке от магазина).

Промоделировать процесс снабжения сети строительных магазинов в дневную и ночную смену, с учетом того, что средняя скорость движения в ночное время увеличивается с 30 км/час до 45 км, а стоимость часа водителя и грузчика в ночное время увеличивается на 25 % с базовой ставки 1200 руб/час.

Задание 2023_Б16. <u>Строй.техника</u> (СППР, разработка ПО, анализ текста на основе НС)

Разработать прототип интеллектуальной системы для информационной поддержки процесса заказ строительной техники. Зачастую при разовом заказе строительной техники происходят ошибки в части определения условий выполнения работ:

- для экскаваторных и бурильных работ в части твердого грунта (скала) требуется использовать доп.оборудование;
- наличие грунтовых вод или заболоть (болото) или мягкого грунта в совокупности с погодными условиями (например, дождь) - ограничивает доступ к объекту выполнения работ техники;
- для кранов, автовышек и манипуляторов могут накладывать ограничения: близость ЛЭП, вес груза в совокупности с грузоподъемностью, углом разгрузки/погрузки, вылетом стрелы;
- мягкий грунт и наличие объектов, препятствующих разгрузке/погрузке также может привести к опрокидыванию крана/манипулятора;
- в дождливую погоду, слякоть и по мягкому грунту не работают тяжелые грузовики и бетономешалки;
 - др. условия (проработать самостоятельно).

Основная сценарий - в зависимости от параметров заказа (требуемых работ), условий на объекте и погодных условий подобрать варианты техники и оценить стоимость заказа.

В части анализа текста на основе НС-методов подготовить наборы текстов и произвести извлечение существенной информации и знаний для базы знаний.

LMS-платформа – не предусмотрена

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Экзамен

Список примерных вопросов

- 1. Разработка прототипа гибридной СППР на основе СДМС BPsim.MAS и СТЭП BPsim.DSS.
 - 2. Особенности организационно-технических систем (ОТС).
 - 3. Структура интеллектуальной системы.
 - 4. Особенности процесса принятия решений в ОТС.
 - 5. Структура и функции СППР.
 - 6. Классификация систем ситуационного моделирования.
 - 7. Представление знаний продукционными правилами.
 - 8. Представление знаний семантическими сетями.
 - 9. Фреймовое представление знаний.
 - 10. Агенты. Свойства интеллектуальных агентов.
 - 11. Мультиагентные системы.
 - 12. Классификация СППР.
 - 13. Примеры СППР.
 - 14. Имитационное моделирование.
 - 15. Алгоритмы продвижения по модельному времени.
 - 16. Архитектуры мультиагентных систем.
 - 17. Ситуационное управление.
- 18. Технология разработки и внедрения СППР (на примере программных комплексов семейства BPsim).
 - 19. Классификация систем поддержки принятия решений, примеры реализации СППР.

- 20. Система динамического моделирования ситуаций (СДМС) BPsim.MAS: пользовательский интерфейс, графический язык и блоки для построения модели, проведение экспериментов и средства анализа результатов.
- 21. Система технико-экономического проектирования (СТЭП) BPsim.MSN: описание функциональной модели экспертной системы в виде диаграммы потоков данных; построение концептуальной модели предметной области с помощью расширенной диаграмм классов.
- 22. Визуализация вывода на фреймах, конструктор машины вывода (диаграммы поиска решений); логика работы машины вывода и ее графическая интерпретация в виде дерева поиска решений.
 - 23. Виды архитектур агентных систем (реактивная, интеллектуальная, гибридная).
 - 24. Методы машинного обучения в приложениях к СППР.
 - 25. Системы принятия решений на основе глубоких нейронных сетей.
 - LMS-платформа не предусмотрена

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направление воспитательно й деятельности	Вид воспитательн ой деятельности	Технология воспитательной деятельности	Компетенц ия	Результаты обучения	Контроль но- оценочны е мероприят ия
Профессиональ ное воспитание	профориентац ионная деятельность	Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности Технология самостоятельной работы	ПК-8	ПК-8.1. 3-1	Лекции Экзамен Контрольн ая работа