Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.Н.Ельцина» Химико-технологический институт

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Технологии неорганических веществ

Перечень сведений о рабочей программе дисципли-	Учетные данные
ны	
Программа аспирантуры	Код ПА 2.6.7.
Технологии неорганических веществ	
Группа специальностей	Код 2.6.
Химические технологии, науки о материалах, металлур-	
гия	
Федеральные государственные требования (ФГТ)	Приказ Министерства науки и высше-
	го образования Российской Федерации
	от 20.10.2021 г. № 951
Самостоятельно утвержденные требования (СУТ)	Приказ «О введении в действие «Тре-
	бований к разработке и реализации
	программ подготовки научных и науч-
	но-педагогических кадров в аспиран-
	туре УрФУ» от 31.03.2022 №315/03

Екатеринбург 2022 г.

Рабочая программа дисциплины составлена авторами:

№ п/п	ФИО	Ученая степень, ученое звание	Должность	Структурное под- разделение	Подпись
1	Марков Вяче-	Д.х.н., профессор	Заведующий	Кафедра коллоидной	01
	слав Филиппо-	500 40 501	кафедрой	и физической химии	1961-
	вич				1
2	Низов Василий	К.т.н., доцент	Доцент	Кафедра технологии	11
	Александрович			электрохимических	Alon
				производств	VO

Рекомендовано учебно-методическим советом Химико-технологического института

Председатель	учебно-	мето,	дического	совета
Протокол № _	6	от _	_30.05.202	2_ г.

Бар [E.A. Бутрина] [А.Б. Даринцева]

Согласовано:

Начальник ОПНПК

1. ОБЩАЯ ХАРАКТЕРИСТИКА ДИСЦИПЛИНЫ ТЕХНОЛОГИИ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

1.1. Аннотация содержания дисциплины

Дисциплина «Технология неорганических веществ» (ТНВ) относится к базовой части программы аспирантуры.

Цель дисциплины: получение аспирантами знаний по технологиям неорганических веществ, включая первичную переработку минерального неорганического сырья

Изучение дисциплины предполагает выполнение следующих задач:

- изучение технологий производства широкой номенклатуры неорганических веществ
- изучение физико-химических основ и технологических принципов наукоемких химических технологий, позволяющих решать проблемы ресурсосбережения и экологической безопасности переработки природных сырьевых ресурсов и техногенных образований, природа которых обусловлена хозяйственной деятельностью человеческого сообщества.
- приобретение новых научных знаний в области создания энергосберегающих и экологически безопасных технологий производства потребительских продуктов широкого профиля.
- формирование умений по разработке оптимальных технологических схем производства неметаллических материалов, в т.ч. в нанодисперсном состоянии.

1.2. Язык реализации дисциплины – русский.

1.3. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины аспирант должен:

Знать:

- структуру и основные свойства природного минерального сырья;
- методы исследования природного минерального сырья и техногенных образований;
- физико-химические основы технологий переработки минеральных образований.;
- основные закономерности процессов технологий переработки минеральных образований.;
- технологии производства кислот, солей, оснований, промежуточных соединений технологий предприятий химико-металлургического профиля

Уметь:

- использовать современные методы исследования минеральной основы и примесных компонентов
- пользоваться физико-химическими закономерностями процессов при разработке технологий;
- разрабатывать энерго-, ресурсосберегающие и экологически чистые технологии получения в сфере обозначенных тематикой исследований.

Владеть (демонстрировать навыки и опыт деятельности):

- современными методами исследования минеральной основы и примесных сопутствующих компонентов.
 - методами неорганического синтеза, выделения и фракционирования;
- управлять процессами формирования структуры и заданных свойств в процессах кристаллизации.
- навыками работы с научной литературой с целью определения направления исследования и решения специализированных задач.

1.4. Объем дисциплины

		Объе	м дисциплины	Распределение объема
No	Виды учебной работы	Всего ча-	В т.ч. контактная	дисциплины в 6 семестре
п/п		сов	работа (час.)*	(час.)
1.	Аудиторные занятия	4		4
2.	Лекции	4	4	4

3.	Самостоятельная работа аспи-	104	1	
	рантов, включая все виды теку-			104
	щей аттестации			
4.	Промежуточная аттестация	104	1	ϵ
5.	Общий объем по учебному плану,	108		108
	час.			
6.	Общий объем по учебному плану,	3		3
	3.e.			

^{*}Контактная работа составляет:

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Код раздела, темы	Раздел, тема дисциплины	Содержание
P1	Общая характеристика ТНВ	Место и роль ТНВ в экономике и научно-техническом прогрессе. Роль отечественных ученых и научных школ в создании и развитии материаловедения и научных основ ТНВ Классификация ТНВ: по химической природе, по структуре слагающих фаз, по особенностям технологии, строению, функциональному назначению, размерным параметрам. Основные принципы системного проектирования предприятий ТНВ.
P2	Современные представления о химической связи	Энергетические характеристики атомов и ионов. Соотношение энергий связи электронов, атомов и молекул. Потенциал ионизации. Эффективные заряды атомов, представления Слейтера. Сродство к электрону. Различие энергетических характеристик атомов и ионов в свободном и связанном (молекула, кристалл, стекло) состоянии. Понятие электроотрицательности, его физический смысл и эволюция.Орбитальная электроотрицательность. Электроотрицательность по Малликену. Термохимическая электроотрицательность по Полингу. Типы связи. Ковалентная, ионная, металлическая, ван- дер-ваальсова связь. Соотношение энергий. Энергия переноса заряда. Резонансная энергия. Поляризуемость атомов и ионов. Химическая связь в комплексных соединениях. Теория электростатической связи. Коэффициент экранирования. Метод валентных связей. Типы гибридизации. Теория кристаллического поля. Условия изменения энергии d- электронов центрального комплексообразователя в окта-, тетраэдрических комплексах. Соотношение между величинами энергии расщепления d-орбиталей, окта- и тетраэдрических комплексных ионов. Ионы металлов в комплексах с высоким и низким спином. Определение энергии расщепления d-орбиталей по спектрам поглощения комплексных соединений. Влияние кристаллического поля лигандов на физико-химические свойства соединений d-элементов. Эффект Яна-Теллера. Конденсированное состояние вещества. Энергия фазовых переходов. Соотношение между энергиями атомизации, разрыва молекул на атомы и энергиями

в п/п 2,3, - количество часов, равное объему соответствующего вида занятий;

в $\pi.4$ – количество часов, равное сумме объема времени, выделенного преподавателю на консультации в группе (15% от объема аудиторных занятий).

в п.5 – количество часов, равное сумме объема времени, выделенного преподавателю на проведение соответствующего вида промежуточной аттестации одного аспиранта.

	T	
		фазовых переходов (сублимация, испарение, плавление,
		модификационные переходы), его смысл. Методы расчета
		и оценки энергии связей. Степень ионности связи, ее оценка
		по Полингу, Филлипсу, Брауну-Шэннону.
		Особенности металлической связи как ненаправленной
		ковалентной. Элементы зонной теории конденсированных
		тел. Особенности зонной модели для тел периодического и
		непериодического строения (кристаллы, стекла, расплавы).
		Размерные характеристики атомов, ионов, молекул.
		Орбитальный радиус, металлический радиус, ковалентный
		радиус, ван-дер-ваальсов радиус; их физическая суть.
		Радиус иона, причины неопределенности понятия и
		размерных характеристик. Системы радиусов ионов.
		Эффект Фаянса: стабилизация анионов в кристаллическом поле.
		Полиэдрическое описание строения и структуры простых и сложных
		соединений. Правила Полинга для ионных и ковалентных структур, их современное обоснование. Расчет силы связи (связевой валентности,
		валентного усилия связи, порядка и кратности связи).
		Расчет числа атомов металлов, связанных с одним
		Электроотрицательным атомом. Уточнение структур,
		расчет длин связей, оценка степени ковалентности.
		Двоякая структурообразующая функция металлов. Изо-,
		мезо-, и гетеродесмические структуры по Эвансу.
		Энергия связи атомов в конденсированных средах.
		Оценка величин энергии связи по Бацанову, Резицкому,
		Зюлковскому-Джембе. Энергетика координационных
		полиэдров, подход Резницкого.
P3	Твердое состояние	Реальные кристаллы и стекла, их электронная структура.
	вещества.	Энергетический спектр тела конечных размеров.
		Поверхностные состояния, связанные с хемосорбцией.
		Двойной электрический слой.
		Внутренняя поверхность твердых тел. Монокристаллы,
		поликристаллы, керамика. Типы границ и поверхностей в
		реальном твердом теле. Поверхностная энергия твердого
		тела. Примеси. Поверхностные химические соединения.
		Контакт твердых тел. Фактор дисперсности. Наноструктурированные материалы.
		Влияние дисперсности на физические свойства и реакционную
		способность. Статистико-термодинамическая модель
		реального кристалла. Идеальный кристалл. Дефекты кристаллической
		структуры. Равновесные и неравновесные дефекты.
		Точечные дефекты, электронное разупорядочение кристалла. Типы
		разупорядочения: Шоттки, Френкеля, анти-Френкеля. Химическая тер-
		модинамика кристалла с дефектами. Зависимость концентрации дефек-
		тов от температуры. Химические потенциалы атомов, ионов и
		дефектов. Квазихимический подход. Представления об
		ионизации дефектов, их суть. Центры окраски.
		Эффективные заряды. Энергия образования дефектов.
		Термическое равновесие дефектов. Аппроксимация по
		Броуэру. Равновесие "кристалл-газ". Диаграммы Крегера-
		Винка; ионное и электронное разупорядочение. Примесное
		разупорядочение кристаллов. Особенности применения
		квазихимического подхода к соединениям сложного состава.
		Представления Смита, их суть. Модели разупорядочения в гетеро-
		десмических структурах. Фазы переменного состава. Дальтониды и бер-
		толлиды. Закон постоянства состава. Отклонение от стехиометрии;
1		
		трактовка в квазихимической модели. Особенности сложных соединений. Представления Алесковского.

	I	1
		Химический смысл дефектных моделей фаз переменного
		состава. Модели упорядочения и взаимодействия дефектов.
		Ассимиляции дефектов. Протяженные дефекты типа
		Уодели. Представления о микрогетерогенности реальных
		кристаллов. Взаимопрорастание структур. Непрерывно
		адаптированные структуры.
		Аморфное состояние твердых тел. Стекла. Зависимость
		склонности к стеклообразованию от природы и химического
		строения. Вакансионная, сеточная и кристаллитная модели строения
		стекол. Энергетическое состояние поверхности. Валентно-
		ненасыщенные состояния. Поверхность в зонной модели.
		Искривление зон. Состояния и уровни Шоккли и Тамма.
		Размерные эффекты. Поверхностная энергия и поверхностное
		натяжение. Поверхностная энергия ковалентных, металлических и ион-
		ных сред. Физическая, упругая и химическая составляющие межфазной
		энергии. Адсорбция типа "Твердое/Твердое". Адгезионная теория
		контактного плавления. Эвтектики, как микрогетерогенные
		связно-дисперсные системы. Строение и состав поверхности фаз слож-
		ного состава. Понятие о поверхностной активности. Горофильные и
		горофобные компоненты и примеси. Поверхностная сегрегация. По-
		верхностные соединения. Качественно новые граничные состояния.
		Распределенные системы. Экзальтация диффузии и электропроводно-
		сти. Композитные твердые электролиты. Наноматерилы.
P4	Основные	Гидриды. Гидриды ионные, ковалентные, полимерные,
	классы	нестехиометрические. Гидридные комплексы. Особенности
	неорганических	физических и химических свойств гидридов разного типа.
	соединений и	Типы гидридов, характерные для s-, p-, d-, f-элементов.
	их свойства	Оксиды. Характер химических связей в оксидах.
		Особенности строения оксидов: ионные, молекулярные и
		полимерные структуры. Распространенность этих структур
		для оксидов s- p, d-, f-элементов. Кислотные и основные
		оксиды. Их отношение к воде, кислотам, щелочам.
		Окислительно-восстановительные свойства оксидов.
		Изменение свойств оксидов по группам.
		Нестехиометрические оксиды. Сложные оксиды.
		Гидроксиды ионные, молекулярные, полимерные. Гидроксиды постоян-
		ного и переменного состава. Изменение кислотно-основных свойств
		гидроксидов элементов по периодам и группам в зависимости от степе-
		ни окисления атомов элемента.
		Изменение окислительно-восстановительных свойств
		гидроксидов p- и d-элементов по группам.
		Соли. Соли кислородсодержащих и бескислородных
		кислот. Образование элементами солей в катионной и
		анионной формах в зависимости от степени окисления
		элемента и его положения в периодической системе.
		Простые и комплексные соли. Особенности строения
		солей. Соли с полимерными ионами. Координационные
		полимеры. Отношение солей к воде. Состав и устойчивость
		кристаллогидратов. Растворимость и гидролизуемость
		солей. Гидролизуемость полимерных ионов и полимеризация
		продуктов гидролиза.
		Термическая устойчивость солей. Влияние природы катиона и аниона
		на термическую устойчивость и характер термических
		превращений солей. Характеристика анионов и катионов
		по способности к реакциям комплексообразования.
		по спосооности к реакциям комплексоооразования.
		Сравнительная устойчивость солей и соответствующих им
		кислот.
		Галогениды. Галогениды ионные, молекулярные,

		полимерные. Галогенокомплексы. Склонность s-, p-, d- f-
		элементов к образованию галогенидов определенного типа.
		Особенности химических свойств галогенидов разных
		типов. Гидролиз. Кислотные, основные и амфотерные
		галогениды. Изменение кислотно-основного характера
		галогенидов по группам и в зависимости от степени
		окисления атомов образующего их элемента.
		Сульфиды ионные, молекулярные.
		Полисульфиды. Сульфидокомплексы. Сульфиды основные,
		кислотные. Склонность s-, p-, d- f-элементов к образованию
		сульфидов разного типа. Тиокислоты и их соли. Особенности строения.
		Карбиды и нитриды. Типы карбидов и нитридов:
		ионные ковалентные, нестехиометрические. Особенности
		свойств разных типов карбидов и нитридов. Склонность s-,
		р-, d- f-элементов к образованию карбидов и нитридов
		разного типа. Комплексные соединения. Склонность элементов к
		комплексообразованию и образованию молекул и ионов,
		обладающих свойствами лигандов, в зависимости от
		положения в периодической системе. Склонность к
		комплексообразованию s-, p-, d- f-элементов.
P5	Синтез	Получение веществ высокой чистоты. Понятие о
	неорганических	чистоте вещества. Зависимость между чистотой и физико-
	соединений.	химическими свойствами веществ. Лимитируемые и
		нелимитируемые примеси. Химические методы очистки
		веществ. Оценка предельных возможностей химических
		методов. Понятие о коэффициенте разделения. Метод
		металлоорганических соединений. Карбонильный метод.
		Химическое осаждение из газовой фазы. Избирательное
		комплексообразование в растворах. Солевой фильтр.
		Электрохимические методы очистки. Электродиализ,
		метод ионных подвижностей, электролиз с твердыми,
		жидкими и распределенными электродами. Метод
		самораспространяющегося высокотемпературного синтеза (СВС).
		Метод химических транспортных реакций.
		Кристаллизационные методы. Диаграмма состояния и
		коэффициент разделения. Направленная кристаллизация.
		Зонная плавка. Реакции и синтез твердых веществ. Стадийность
		твердофазных превращений. Последовательное и параллельное проте-
		кание стадий. Индукционный период. Учение о лимитирующей
		стадии. Законы зародышеобразования. Модели образования и роста
		зародышей. Первичная и вторичная кинетические области.
		Стадия массопереноса. Перенос через газовую фазу.
		Диффузионный перенос. Объемная, поверхностная и
		зернограничная диффузия. Диффузия по гетерофазным
		включениям. Стартовые элементарные стадии.
		Твердофазное распространение и покрывание. Реакции в
		смесях порошков. Распределение частиц по размерам.
		Компактность реакционной смеси. Активные реагенты.
		Кинетические уравнения. Изо- и неизотермические
		условия осуществления. Геометрические модели реакций.
		Обработка экспериментальных данных (методы линеаризации, метод
		приведенных координат). Модельные методы изучения реакций типа
		твердое/твердое и твердое/газ. Модельные одномерные уравнения. За-
		коны роста пленок, их физический смысл Реакции синтеза и
		двойного обмена. Экспериментальные методы моделирования:
		инертной метки, моделирование реакционных зон, свободной поверхно-
		сти. Обработка экспериментальных данных. Модельные представления
		о механизме реакций твердое/газ. Окисление металлов.

		Термодинамическая теория Вагнера. Электрохимический перенос. Модельные представления о механизме реакций синтеза сложных ионных соединений. Термодинамическая теория Вагнера-Шмальцрида. Рациональные константы скорости. Синтез веществ в наноразмерном состоянии, диспергационный и конденсационный подходы. Диспергационные методы синтеза: механическое дробление; диспергирование макроскопических частиц в растворах; механохимический синтез нанокомпозитов и наночастиц; метод разложения. Растворные методы синтеза: методы химического осаждения (соосаждения); золь-гель метод; гидротермальный метод метод комплексонатной гомогенизации; синтез под действием микроволнового излучения; метод быстрого расширения сверхкритических флюидных растворов; криохимический метод; методы сжигания (глицин-нитратный метод, пиролиз полимерно-солевых композиций). Методы синтеза, основанные на конденсации из газовой фазы: плазмохимический метод синтеза, особенности его реализации при использовании газообразного, капельножидкого и твердого сырья; метод импульсного лазерного испарения;
P6		пы подхода к решению проблем переработки бедного минерального
		ых образований. Природоохранные проблемы.
P6.1	Термодинамиче- ские критерии неравновесности	Причины невоспроизводимости результатов исследований и моделирования технологических процессов для техногенных образований. Методы усреднения состава и свойств продуктов, вовлекаемых в переработку. Фракционирование техногенных образований- основной технологический прием стабилизации физико-химических свойств. Принципы избирательной дезинтеграции в представлениях школы Ревнивцева.
P6.2	Энергоимпульсные эффекты в технологиях гетерогенных систем	Восходящий поток с переменным гидродинамическим режимом в представлениях Карпачевой С.М. Механохимия в ультразвуковом поле. Микроволновые эффекты в приложении к технологиям неорганических веществ.
P6.3	Сверхкритические технологии	Свехкритические флюиды. Физико-химические свойства и особенности структурных связей в суб -и суперкритических условиях. СКВ-процессы в природе и технике. Переработка СОЗ с использованием автономных источников водорода и нефтегазоваых скважин.
P6.4	Кондиционирование шахтных и подотвальных вод.	Проблема ацидификации шахтных вод при разработке сульфидных месторождений и угольных шахт. Круговорот серы. Направление изменений валентных состояний серы в зависимости от окислительновосстановительного потенциала среды и микробиологических условий.

3. ОРГАНИЗАЦИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ, САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ

3.1. Практические занятия

Не предусмотрено.

3.2. Примерная тематика самостоятельной работы

3.2.1. Примерный перечень тем рефератов

Тематика рефератов должна рассматривать аналитический обзор научно-технической и патентной литературы по проблеме, решаемой аспирантом при работе над кандидатской диссертацией.

1. Влияние ультразвуковых полей на скорость технологических процессов в жидкой фазе

- 2. Фракционирование примесных компонентов при перекристаллизации солей в восходящем потоке с переменным гидродинамическим режимом
- 3. Окислительный обжиг хромитов механизм процесса на фоне изменения магнитной воспри-имчивости

Объем реферата 20-25 страниц машинописного текста формата А-4.

3.2.2. Примерная тематика *индивидуальных* или групповых проектов Не предусмотрено.

4. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУ-ТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (Приложение 1)

4.1. Критерии оценивания результатов контрольно-оценочных мероприятий текущей и промежуточной аттестации по дисциплине

Система критериев оценивания опирается на три уровня освоения компонентов компетенций: пороговый, повышенный, высокий.

Компоненты	Признаки уровня освоения компонентов компетенций			
компетенций	пороговый	повышенный	высокий	
Знания	Аспирант демонстрирует	Аспирант демонстриру-	Аспирант может само-	
	знание-знакомство, зна-	ет аналитические зна-	стоятельно извлекать	
	ние-копию: узнает объек-	ния: уверенно воспроиз-	новые знания из окру-	
	ты, явления и понятия,	водит и понимает полу-	жающего мира, творче-	
	находит в них различия,	ченные знания, относит	ски их использовать	
	проявляет знание источ-	их к той или иной клас-	для принятия решений	
	ников получения инфор-	сификационной группе,	в новых и нестандарт-	
	мации, может осуществ-	самостоятельно систе-	ных ситуациях.	
	лять самостоятельно ре-	матизирует их, устанав-		
	продуктивные действия	ливает взаимосвязи		
	над знаниями путем само-	между ними, продук-		
	стоятельного воспроизве-	тивно применяет в зна-		
	дения и применения ин-	комых ситуациях.		
	формации.			
Умения	Аспирант умеет корректно	Аспирант умеет само-	Аспирант умеет само-	
	выполнять предписанные	стоятельно выполнять	стоятельно выполнять	
	действия по инструкции,	действия (приемы, опе-	действия, связанные с	
	алгоритму в известной	рации) по решению не-	решением исследова-	
	ситуации, самостоятельно	стандартных задач, тре-	тельских задач, демон-	
	выполняет действия по	бующих выбора на ос-	стрирует творческое	
	решению типовых задач,	нове комбинации из-	использование умений	
	требующих выбора из	вестных методов, в не-	(технологий)	
	числа известных методов,	предсказуемо изменяю-		
	в предсказуемо изменяю-	щейся ситуации		
	щейся ситуации			
Личностные	Аспирант имеет низкую	Аспирант имеет выра-	Аспирант имеет разви-	
качества	мотивацию учебной дея-	женную мотивацию	тую мотивацию учеб-	
	тельности, проявляет без-	учебной деятельности,	ной и трудовой дея-	
	различное, безответствен-	демонстрирует позитив-	тельности, проявляет	
	ное отношение к учебе,	ное отношение к обуче-	настойчивость и увле-	
	порученному делу	нию и будущей трудо-	ченность, трудолюбие,	
		вой деятельности, про-	самостоятельность,	
		являет активность.	творческий подход.	

[Выбрать из списка, либо дополнить наименования оценочных средств]

4.2.1. Перечень примерных вопросов для зачета

Не предусмотрено.

4.2.2. Перечень примерных вопросов для экзамена

Используя приведенную ниже схему ответа, проанализируйте предлагаемые вещества.

Примеры веществ:

- 1. Оксиды РЗЭ (Ү-группа)
- 2. Оксиды РЗЭ (Се-группа)
- 3. Оксиды V, Nb, Та
- 4. Оксиды и оксигалогениды Nb
- 5. Оксиды ванадия
- 6. CaO, NiO, VO, EuO
- 7. CrO3, WO3, UO3
- 8. Хлориды К, Ті и Ge
- 9. Al2O3, Cr2O3, Ti2O3
- 10. CO2, SnO2, PbO2
- 11. ZnO, CdO, HgO
- 12. BaSO4, BaWO4, BaFeO4
- 13. BaSO3, BaTiO3, BaPbO3

Схема описания:

- 1. Класс соединений с точки зрения состава.
- 2. Особенности строения, обусловленные типом атомов, из которых состоит вещество, их размерных и энергетических характеристик (в свободном и связанном) состояниях. Характер связи между атомами, обоснование строения структурных единиц и тип связи между ними в конденсированном состоянии. Фазовые переходы, их энергия. Полиэдрическое описание строения и структуры соединений.
- 3. Отклонение от стехиометрии и способы его реализации в структуре. Обоснование типа и величины отклонения от стехиометрии. Тип разупорядочения структуры, прогноз его эволюции с изменением параметров внешней среды.
- 4. Физические свойства, вытекающие из состава и строения вещества (электрические, оптические, магнитные и др.).
- 5. Химические свойства (реакционная способность), вытекающие из состава и строения с физико-химическим обоснованием условий протекания реакций и их продуктов.
- 5.1. Индивидуальное вещество
- отношение к нагреванию,
- участие в реакциях: оксилительно-восстановительных (OBP), кислотно-основных реакциях (КОР), реакциях комплексообразования,
- отношение к воде и другим растворителям.
- 5.2. Химические свойства водного раствора вещества (ОВР, осаждение, КОР, комплексообразование, конденсация)
- 5.3. Сравнение с аналогами (горизонтальными, вертикальными, диагональными).
- 6. Синтез вещества.
- 6.1. Методы синтеза данного вещества с обоснованиями условий синтеза.
- 6.2. Предложение механизма и формально-кинетического описания процесса синтеза.
- 6.3. Анализ возможных вариантов типа лимитирующей стадии и ее механизма.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Рекомендуемая литература

5.1.1. Основная литература

- 1. Третьяков Ю.Д. Неорганическая химия. Т 1-3. М.: Высш. шк. 2008.
- 2. Угай Я. А. Общая и неорганическая химия. М., Высшая школа. 2009.
- 3. Ахметов Н. С. Общая и неорганическая химия. М., Высшая школа. 2008.
- 4. Корольков Д.В., Скоробогатов Г.А. Теоретическая химия. СПб.: Изд-во С.-Петерб. ун-та, 2004
- 5. Кукушкин Ю.Н. Химия координационных соединений. М.: Высшая школа, 2001
- 6. Гусев А.И. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. М.: Физматлит, 2007.
- 7. Бокштейн Б.С., Ярославцев А.Б. Диффузия атомов и ионов в твердых телах. М.: МИСИС. 2005.
- 8.Позин М.Е. и др. Физико-химические основы неорганической технологии. Л.: Химия, 1985.
- 9.Степин Б.В. и др. Методы получения особо чистых неорганических веществ. Л.: Химия, 1989.
- 10. Рамбиди Н. Г. Физические и химические основы нанотехнологий. М.: Физматлит, 2009.
- 11. Гусев А.И. Нанометриалы, наноструктуры, нанотехнологии. М: ФИЗМТЛИТ. 2005.
- 12.Сыркин В.Г. CVD-метод. Химическое парофазное осаждение. М.: Наука, 2000.
- 13. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во С.-Петерб. унта, 2000.
- 14. Суздалев И. П. Нанотехнология. Физико-химия нанокластеров, наноструктур и наноматериалов. 2-е изд., испр. М.: Книжный дом "Либроком", 2009. 589 с.
- 15. Сергеев Г. Б. Нанохимия: учебное пособие. 3-е изд. М.: КДУ, 2009. 336 с.
- 16. Кнотько А.В., Пресняков И.А., Третьяков Ю.Д. Химия твердого тела. М.: Издательский цент "Академия", 2006.
- 17. Третьяков Ю.Д., Путляев В.И. Введение в химию твердофазных материалов. М.: Изд-во Моск. ун-та: Наука, 2006.

5.1.2. Дополнительная литература

- 1. Третьяков Ю.Д. Твердофазные реакции. М.: 1978.
- 2. Вассерман И.М., Химическое осаждение из растворов. Л.: Химия, 1980.
- 3. Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений. М.: Высш.шк., 1990.
- 4. Гиллеспи Р., Харгиттан И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992
- 5. Степин Б. Д., Цветков А. А.. Неорганическая химия. М., Высшая школа. 1994.
- 6. А.Уэллс. Структурная неорганическая химия, М.: Мир, 1987. Т.1-3.
- 7. Вест А. Химия твердого тела. Теория и приложения. В 2-х частях. Ч. 1. Пер. с англ. М., Мир. 1988.
- 8. В.Н. Чеботин, М.В. Перфильев. Электрохимия твердых электролитов. М., Химия, 1978.
- 9. В.Н. Чеботин. Физическая химия твердого тела. М., Химия, 1982.
- 10. Якимов М.А., Основы неорганического синтеза. М.: Химия, 1978.
- 11. Низов В.А. Переработка техногенного неорганического сырья: прикладные аспекты/В.А. Низов,В.И. Аксенов,В.И. Екатеринбург: УрФУ ,2014,100с.
- 12.Низов В.А. Энергоимпульсные эффекты в технологиях гетерогенных систем: учеб. пособие/В.А.Низов,В А. Никулин, М-во образовании и науки Рос. Федерации, Урал. федер ун-т.- Екатеринбург: изд-во Урал. ун-та, 2017-151с.
- 13. Низов В.А. Сверхкритические технологии в нефтегазовой отрасли: монография/ В.А. Низов.-Москва, Вологда: Инфра- Инженерия,2020.- 116 с

5.2. Методические разработки

Не используются.

5.3. Программное обеспечение

- 1. Microsoft office (Word, Excel, Power point);
- 2. Adobe Reader.

5.4. Базы данных, информационно-справочные и поисковые системы

- 1. ScienceDirect: http://www.sciencedirect.com;
- 2. Web of Science: http://apps.webofknowledge.com;
- 3. Scopus: http://www.scopus.com;
- 4. Reaxys: http://reaxys.com;
- 5. Поисковая система EBSCO Discovery Service http://lib.urfu.ru/course/view.php?id=141;
- 6. Федеральный институт промышленной собственности http://www1.fips.ru;
- 7. Интеллектуальная поисковая система Нигма.РФ . режим доступа: http://www.nigma.ru.

5.5. Электронные образовательные ресурсы

- 1. Зональная научная библиотека http://lib.urfu.ru;
- 2. Каталоги библиотеки http://lib.urfu.ru/course/view.php?id=76;
- 3. Электронный каталог http://opac.urfu.ru;

- 4. Электронно-библиотечные системы http://lib.urfu.ru/mod/resource/view.php?id=2330;
- 5. Электронные ресурсы свободного доступа http://lib.urfu.ru/course/view.php?id=75;
- 6. Электронные ресурсы по подписке http://lib.urfu.ru/mod/data/view.php?id=1379.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием

Уральский федеральный университет имеет специальные помещения для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования.