ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Прикладной анализ данных

Код модуля 1161465(1)

Модуль Прикладной анализ данных

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Комоцкий Евгений	без ученой	Ассистент	аналитики больших
	Игоревич	степени, без		данных и методов
		ученого звания		видеоанализа
2	Федотов Олег	без ученой	Старший	интеллектуальных
	Васильевич	степени, без	преподават	информационных
		ученого звания	ель	технологий

Согласовано:

Управление образовательных программ Е.А. Смирнова

Авторы:

- Комоцкий Евгений Игоревич, Ассистент, аналитики больших данных и методов видеоанализа
- Федотов Олег Васильевич, Старший преподаватель, интеллектуальных информационных технологий

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Прикладной анализ данных

1.	Объем дисциплины в	3
	зачетных единицах	
2.	Виды аудиторных занятий	Лекции
		Практические/семинарские занятия
		Лабораторные занятия
3.	Промежуточная аттестация	Экзамен
4.	Текущая аттестация	Контрольная работа 1
		Домашняя работа 1

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Прикладной анализ данных

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Код и наименование компетенции	Планируемые результаты обучения (индикаторы)	Контрольно-оценочные средства для оценивания достижения результата обучения по дисциплине
1	2	3
ПК-6 -Способен использовать цифровые решения для работы с потоками ESG-данных и составления отчетности организации	3-1 - Описать современные информационно-коммуникативные и интеллектуальные технологии, инструментальные среды, программно-технические платформы для решения профессиональных задач 3-2 - Описывать современные техники и методики сбора данных для решения управленческих и исследовательских задач 3-4 - Сделать обзор основных методов моделирования и математического анализа,	Домашняя работа Контрольная работа Лабораторные занятия Лекции Практические/семинарские занятия Экзамен

применимых для формализации и решения задач в области техносферной безопасности 3-5 - Описать технологии хранения и обработки больших данных в организации: базы данных, хранилища данных, распределенную и параллельную обработку данных, вычисления в оперативной памяти П-2 - Создавать отчеты, рефераты, статьи, оформленные в соответствии с предъявляемыми требованиями с использованием интеллектуальных информационно-аналитических систем У-2 - Выбирать оптимальные методы обработки и анализа данных, в том числе используя интеллектуальные информационно-аналитические системы при решении управленческих и исследовательских задач У-6 - Выбирать оптимальные современные методы и инструментальные средства анализа больших данных, методы интерпретации и визуализации больших данных

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

1. Лекции: коэффициент значимости совокупных результатов лекционных занятий -0.4		
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
контрольная работа	6	60
активность на занятиях	8	40
Весовой коэффициент значимости результатов	текущей аттестации по ле	кциям — 0.5

Промежуточн	ая аттестация по лекциям – экзамен
Весовой коэф	фициент значимости результатов промежуточной аттестации по лекциям
- 0.5	
2. Практическ	кие/семинарские занятия: коэффициент значимости совокупных

2. Практические/семинарские занятия: коэффициент значимости совокупных
результатов практических/семинарских занятий – 0.3

Текущая аттестация на практических/семинарских занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
домашняя работа	14	60
активность на занятиях	16	40

Весовой коэффициент значимости результатов текущей аттестации по практическим/семинарским занятиям-1

Промежуточная аттестация по практическим/семинарским занятиям-нет Весовой коэффициент значимости результатов промежуточной аттестации по практическим/семинарским занятиям- не предусмотрено

3. Лабораторные занятия: коэффициент значимости совокупных результатов лабораторных занятий -0.3

Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
отчет по лабораторным работам	16	100

Весовой коэффициент значимости результатов текущей аттестации по лабораторным

Промежуточная аттестация по лабораторным занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям – не предусмотрено

4. Онлайн-занятия: коэффициент значимости совокупных результатов онлайн-занятий -не предусмотрено

Текущая аттестация на онлайн-занятиях	Сроки – семестр,	Максималь ная оценка
	учебная	в баллах
	неделя	

Весовой коэффициент значимости результатов текущей аттестации по онлайнзанятиям -не предусмотрено

Промежуточная аттестация по онлайн-занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по онлайнзанятиям – не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

Текущая аттестация выполнения курсовой	Сроки - семестр,	Максимальная		
работы/проекта	учебная неделя	оценка в баллах		
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не				

предусмотрено

Весовой коэффициент промежуточной аттестации выполнения курсовой работы/проекта- защиты – не предусмотрено

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4 **Критерии оценивания учебных достижений обучающихся**

Результаты	Критерии оценивания учебных достижений, обучающихся на			
обучения	соответствие результатам обучения/индикаторам			
Знания	Студент демонстрирует знания и понимание в области изучения на			
	уровне указанных индикаторов и необходимые для продолжения			
	обучения и/или выполнения трудовых функций и действий,			
	связанных с профессиональной деятельностью.			
Умения	Студент может применять свои знания и понимание в контекстах,			
	представленных в оценочных заданиях, демонстрирует освоение			
	умений на уровне указанных индикаторов и необходимых для			
	продолжения обучения и/или выполнения трудовых функций и			
	действий, связанных с профессиональной деятельностью.			
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне			
	указанных индикаторов.			
Другие результаты	Студент демонстрирует ответственность в освоении результатов			
	обучения на уровне запланированных индикаторов.			
	Студент способен выносить суждения, делать оценки и			
	формулировать выводы в области изучения.			
Студент может сообщать преподавателю и коллегам сво				
	собственное понимание и умения в области изучения.			

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5 Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)					
No	Содержание уровня	Шкала оценивания				
п/п	выполнения критерия	Традиционная		Качественная		
	оценивания результатов	характеристика уровня		характеристи		
	обучения			ка уровня		
	(выполненное оценочное					
	задание)					
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)		
	(индикаторы) достигнуты в	(80-100 баллов)				
	полном объеме, замечаний нет					

2.	Результаты обучения	Хорошо		Средний (С)
	(индикаторы) в целом	(60-79 баллов)		
	достигнуты, имеются замечания,			
	которые не требуют			
	обязательного устранения			
3.	Результаты обучения	Удовлетворительно		Пороговый (П)
	(индикаторы) достигнуты не в	(40-59 баллов)		
	полной мере, есть замечания			
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный
	не соответствует индикаторам,	НО	зачтено	(H)
	имеются существенные ошибки и	(менее 40 баллов)		
	замечания, требуется доработка			
5.	Результат обучения не достигнут,	Недостаточно свидетельств для оценивания		Нет результата
	задание не выполнено			

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Практические/семинарские занятия

Примерный перечень тем

- 1. Применение методов анализа данных с использованием программ Vortex, SPSS, Statistica и языков программирования Python, R для решения практических задач.
- 2. Применение методов обработки и анализа данных для решения различных практических задач.
 - 3. Библиотека Pandas: работа с данными и визуализация.
 - 4. Jupyter Notebook и Google Colab: интерактивная работа с данными.
 - 5. Применения машинного обучения в бизнесе и науке.
 - 6. Интерфейс платформы Kaggle и основные функции.
 - 7. Кросс-валидация в оценке качества алгоритмов.
 - 8. Уменьшение разброса с помощью усреднения: методы и примеры применения.

Примерные задания

Реализация алгоритма машинного обучения с помощью Google Colab.

Описание: Реализовать алгоритм машинного обучения (например, линейную регрессию или классификацию) для решения конкретной задачи с использованием интерактивных инструментов Google Colab. Сравнить результаты работы алгоритма с различными методами предварительной обработки данных.

Загрузить набор данных для обучения и тестирования модели из выбранного источника (например, UCI Machine Learning Repository или Kaggle) в Google Colab с использованием библиотеки pandas.

Разбить набор данных на обучающую и тестовую выборки с использованием функций

train test split библиотеки sklearn.

Реализовать и настроить алгоритм машинного обучения для решения конкретной задачи (например, логистической регрессии или классификации).

Провести кросс-валидацию модели на обучающей выборке с использованием К-кратной перекрестной проверки.

Выполнить предварительную обработку данных: удалить пропущенные значения, преобразовать категориальные переменные, нормализовать числовые переменные.

Оценить качество работы модели с помощью метрик точности (accuracy), полноты (recall), F1-меры и ROC-кривой.

Сравнить результаты работы модели с различными методами предварительной обработки данных и интерпретировать полученные результаты.

Результат: Модель машинного обучения, обученная на выбранном наборе данных и отчет о сравнении результатов работы модели с разными методами предварительной обработки данных, включающий выводы о наилучшем методе предварительной обработки.

LMS-платформа – не предусмотрена

5.1.3. Лабораторные занятия

Примерный перечень тем

- 1. Анализ данных с использованием программы Vortex.
- 2. Программирование на Python для анализа данных.
- 3. Интерактивная работа с данными в Google Colab.
- 4. Применение машинного обучения в бизнес-анализе.
- 5. Кросс-валидация качества алгоритмов машинного обучения.

LMS-платформа – не предусмотрена

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа

Примерный перечень тем

1. Применение интерактивных инструментов Google Colab для анализа данных и визуализации результатов.

Примерные задания

Анализ и визуализация данных с помощью Google Colab.

Описание: Проанализировать и визуализировать набор данных с помощью интерактивных инструментов в Google Colab. Разработать и применить различные методы обработки и визуализации данных для лучшего понимания и интерпретации данных.

Загрузить набор данных из открытого источника (например, Kaggle или UCI Machine Learning Repository) в Google Colab и обработать его для анализа.

Загрузить набор данных из выбранного источника в Google Colab с использованием библиотеки pandas.

Предварительно обработать данные: удалить пропущенные значения, преобразовать категориальные переменные, нормализовать числовые переменные.

Осуществить визуализацию данных: построить гистограммы, точечные диаграммы, коробки с усами, диаграммы размаха для каждой числовой переменной в наборе данных.

Построить корреляционную матрицу для всех числовых переменных в наборе данных, чтобы выявить наличие линейных связей между переменными.

Построить деревья решений для каждой категориальной переменной в наборе данных для выявления основных паттернов и зависимостей в данных.

Интерпретировать полученные результаты и представить выводы о структуре и свойствах анализируемого набора данных.

Результат: Отчет о проведенном анализе данных, содержащий гистограммы, графики корреляции, деревья решений и выводы об основных характеристиках и зависимостях в анализируемом наборе данных.

LMS-платформа – не предусмотрена

5.2.2. Домашняя работа

Примерный перечень тем

- 1. Сравнительный анализ различных методов предварительной обработки данных для задач машинного обучения.
- 2. Исследование эффективности использования различных алгоритмов машинного обучения для решения конкретных практических задач.
- 3. Реализация и сравнение различных методов оценки качества моделей машинного обучения.

Примерные задания

Задание 1. Сравнение алгоритмов предварительной обработки данных.

Описание: Провести сравнительный анализ эффективности различных методов предварительной обработки для задач машинного обучения и выбрать наиболее подходящий метод для конкретного набора данных.

Загрузить набор данных, который будет использоваться для анализа (например, из UCI Machine Learning Repository).

Реализовать и настроить несколько алгоритмов машинного обучения (классификацию и регрессию) на данном наборе данных.

Провести предварительную обработку данных с использованием различных методов: удаление пропущенных значений, нормализация, стандартизация, масштабирование и т.д.

Оценить качество работы каждого алгоритма машинного обучения после предварительной обработки с использованием метрик качества (accuracy, precision, recall, F1-мера и т.п.).

Сравнить полученные результаты и выбрать метод предварительной обработки, который обеспечивает наилучшие результаты для данного набора данных.

Результат: Отчет, содержащий результаты сравнительного анализа различных методов предварительной обработки и выводы о наиболее эффективном методе для конкретного набора данных.

Задание 2. Оценка качества моделей машинного обучения.

Описание: Реализовать различные методы оценки качества моделей машинного обучения и сравнить их эффективность.

Загрузить набор данных для оценки качества модели.

Реализовать и настроить модели машинного обучения на данном наборе данных (классификацию, регрессию).

Оценить качество работы каждой модели с использованием различных метрик оценки качества (ассигасу, F1-мера, ROC-AUC и т.д.).

Сравнить полученные результаты и сделать выводы о наиболее эффективной метрике оценки качества для данного набора данных и конкретной задачи машинного обучения.

Результат. Отчет, содержащий результаты оценки качества моделей и выводы о наиболее подходящей метрике качества для конкретной задачи машинного обучения.

LMS-платформа – не предусмотрена

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Экзамен

Список примерных вопросов

- 1. Какие программы используются для анализа данных?
- 2. Какие языки программирования применяются для анализа данных?
- 3. В чем разница между Jupyter Notebook и Google Collab?
- 4. В каких сферах применяется машинное обучение?
- 5. Как работает платформа Kaggle?
- 6. Что такое кросс-валидация и зачем она нужна?
- 7. Как уменьшить разброс с помощью усреднения?
- 8. Какие методы анализа данных вы знаете?
- 9. Какие инструменты для обработки данных вы используете?
- 10. В чем заключается работа с данными с помощью Python и R?
- 11. Что такое визуализация данных и как ее можно провести?
- 12. Какие алгоритмы машинного обучения вы знаете?
- 13. Зачем нужно применять машинное обучение в бизнесе?
- 14. Какие функции есть у платформы Kaggle?
- 15. Какие метрики используются для оценки качества алгоритмов?
- 16. В чем заключаются преимущества использования Google Colab?
- 17. Какие задачи можно решить с помощью анализа данных?
- 18. Какие примеры применения машинного обучения вы можете привести?
- 19. Как можно улучшить качество алгоритмов машинного обучения?
- LMS-платформа не предусмотрена

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.