ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Оборудование трубных цехов

Код модуля 1158673

Модуль Технологии и машины трубного производства

Екатеринбург

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ерпалов Михаил	кандидат	Доцент	обработки металлов
	Викторович	технических		давлением
		наук, без ученого		
		звания		

Согласовано:

Управление образовательных программ

Ю.В. Коновалова

Авторы:

• Ерпалов Михаил Викторович, Доцент, обработки металлов давлением

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Оборудование трубных цехов

1.	Объем дисциплины в	12	
	зачетных единицах		
2.	Виды аудиторных занятий	Лекции	
		Практические/семинарские занятия	
3.	Промежуточная аттестация	Экзамен	
4.	Текущая аттестация	Контрольная работа 2	
		Домашняя работа 2	

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Оборудование трубных цехов

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

		Контрольно-оценочные
Код и наименование	Планируемые результаты	средства для оценивания
компетенции	обучения (индикаторы)	достижения результата
		обучения по дисциплине
1	2	3
ОПК-5 -Способен	Д-1 - Демонстрировать	Домашняя работа № 1
планировать,	требовательность и	Лекции
организовывать и	принципиальность в процессе	Практические/семинарские
контролировать	контроля выполнения заданий	занятия
работы по созданию,	3-1 - Изложить основные нормы	Экзамен
установке и	и правила, регламентирующие	
модернизации	работы по созданию, установке	
технологического	и модернизации	
оборудования и	технологического	
технологических	оборудования, технологических	
процессов в сфере	процессов и информационных	
своей	систем	
профессиональной	3-2 - Объяснить принципы и	
деятельности	типовой порядок планирования,	
	организации и контроля	
	выполнения работ по созданию,	
	установке и модернизации	
	технологического	
	оборудования, технологических	

процессов и информационных систем 3-3 - Перечислить основные разделы документов (технического задания, технических условий и т.п.), в соответствии с которыми выполняются работы по созданию, установке и модернизации технологического оборудования, технологических процессов и информационных 3-4 - Показать возможности использования цифровых технологий (создание цифровых двойников) для оптимизации работы по созданию, установке и модернизации технологического оборудования, технологических процессов и информационных систем П-1 - Самостоятельно составить план работ в целом по этапам создания, установки и модернизации технологического оборудования, технологических процессов и информационных систем либо отдельных этапов этой работы П-2 - Провести контроль выполнения заданий с учетом соответствия регламентам, срокам исполнения и материальным затратам У-1 - Обосновать детальный план проведения работ по созданию, установке и модернизации технологического оборудования, технологических процессов и информационных систем У-2 - Анализировать задания, распределять и объяснять их работникам коллектива при выполнении работ по созданию, установке и модернизации

	оборудования, технологических процессов и информационных систем У-3 - Оценивать исполнение работ по созданию, установке и модернизации технологического оборудования, технологических процессов и информационных систем на соответствие регламентам	
ОПК-6 -Способен планировать и организовать работы по эксплуатации технологического оборудования и обеспечению технологических процессов в сфере своей профессиональной деятельности с учетом энерго- и ресурсоэффективност и производственного цикла и продукта	Д-1 - Демонстрировать ответственное отношение к работе, организаторские способности 3-1 - Перечислить основные технические параметры и технологические характеристики эксплуатируемого оборудования и реализуемых технологических процессов 3-2 - Назвать имеющиеся ограничения режимов эксплуатации оборудования и регламенты технологических процессов П-1 - Организовать в соответствии с разработанным утвержденным планом выполнение работ по эксплуатации технологического оборудования и обеспечению технологических процессов в сфере своей профессиональной деятельности У-1 - Технически грамотно формулировать задания по эксплуатации технологического оборудования и обеспечению технологических процессов с учетом имеющихся ограничений режимов эксплуатации оборудования и регламенты технологических процессов У-2 - Оценивать ход эксплуатации технологического оборудования и реализации технологических процессов на основании визуального анализа	Домашняя работа № 2 Лекции Практические/семинарские занятия Экзамен

	и показаний контрольно- измерительной аппаратуры	
ПК-26 -Способен организовать согласованную работу производственных подразделений на всех этапах технологических процессов по обработке металлов давлением	3-1 - Описывать устройство и принцип работы основного и вспомогательного оборудования цехов по обработке металлов давлением. У-1 - Обосновано подбирать основное и вспомогательное оборудование для различных способов обработки металлов давлением с учетом устройства и принципов его работы и исходных данных.	Контрольная работа № 1 Контрольная работа № 2 Лекции Практические/семинарские занятия Экзамен

- 3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)
- 3.1. Процедуры текущей и промежуточной аттестации по дисциплине

Текущая аттестация на лекциях	Сроки –	Максималь
	семестр,	ная оценка
	учебная	в баллах
	неделя	
домашняя работа	1,2	100
Весовой коэффициент значимости результатов текущей а	ттестации по лен	сциям – 0.5
Промежуточная аттестация по лекциям – экзамен		
Весовой коэффициент значимости результатов промежут	очной аттестаци	и по лекциям
- 0.5		
2. Практические/семинарские занятия: коэффициент знач	чимости совокуп	ных
результатов практических/семинарских занятий – 0.2		
Текущая аттестация на практических/семинарских	Сроки –	Максималь
занятиях	семестр,	ная оценка
	учебная	в баллах
	неделя	
контрольная работа	1,5	100
Весовой коэффициент значимости результатов текущей а	ттестации по	
A =		
практическим/семинарским занятиям— 0.5	им занятиям–нет	
практическим/семинарским занятиям– 0.5 Промежуточная аттестация по практическим/семинарскі		
Промежуточная аттестация по практическим/семинарскі Весовой коэффициент значимости результатов промежут		и по
Промежуточная аттестация по практическим/семинарскі		и по

Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах		
Весовой коэффициент значимости результатов текущей аттестации по лабораторным занятиям -не предусмотрено				
Промежуточная аттестация по лабораторным занятиям –нет Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям – не предусмотрено				

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

Текущая аттестация выполнения курсовой	Сроки – семестр,	Максимальная				
работы/проекта	учебная неделя	оценка в баллах				
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не						
предусмотрено						
Весовой коэффициент промежуточной аттестации выполнения курсовой						
работы/проекта- защиты – не предусмотрено						

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

- 0.8		T
Текущая аттестация на лекциях	Сроки –	Максималь
	семестр,	ная оценка
	учебная	в баллах
	неделя	
домашняя работа	2,2	100
Весовой коэффициент значимости результатов текущей а	ттестации по лен	сциям – 0.5
Промежуточная аттестация по лекциям – экзамен		
Весовой коэффициент значимости результатов промежут – 0.5	очной аттестаци	и по лекциям
2. Практические/семинарские занятия: коэффициент зна	чимости совокуп	ных
результатов практических/семинарских занятий – 0.2	, , , , , , , , , , , , , , , , , , ,	
Текущая аттестация на практических/семинарских	Сроки –	Максималь
занятиях	семестр,	ная оценка
	учебная	в баллах
	неделя	
		100
 контрольная работа	2,5	100
1 1		100
Весовой коэффициент значимости результатов текущей а		100
контрольная работа Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарск	ттестации по	
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарскі	ттестации по им занятиям-нет	1 -3-3
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарска Весовой коэффициент значимости результатов промежут	ттестации по им занятиям-нет	1 -3-3
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарски Весовой коэффициент значимости результатов промежут практическим/семинарским занятиям— 0.5	иттестации по им занятиям-нет очной аттестаци	и по
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарска Весовой коэффициент значимости результатов промежут практическим/семинарским занятиям— 0.5 3. Лабораторные занятия: коэффициент значимости сово	иттестации по им занятиям-нет очной аттестаци	и по
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарски весовой коэффициент значимости результатов промежут практическим/семинарским занятиям— 0.5 3. Лабораторные занятия: коэффициент значимости сово лабораторных занятий—не предусмотрено	иттестации по им занятиям-нет очной аттестаци	и по
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарска Весовой коэффициент значимости результатов промежут	им занятиям—нет очной аттестаци купных результа Сроки —	и по
Весовой коэффициент значимости результатов текущей а практическим/семинарским занятиям— 0.5 Промежуточная аттестация по практическим/семинарски Весовой коэффициент значимости результатов промежут практическим/семинарским занятиям— 0.5 3. Лабораторные занятия: коэффициент значимости сово лабораторных занятий—не предусмотрено	иттестации по им занятиям—нет очной аттестаци купных результа	и по тов Максималь

Весовой коэффициент значимости результатов текущей аттестации по лабораторным занятиям -не предусмотрено

Промежуточная аттестация по лабораторным занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям – не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

Текущая аттестация выполнения курсовой	Сроки – семестр,	Максимальная				
работы/проекта	учебная неделя	оценка в баллах				
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не						
предусмотрено						
Весовой коэффициент промежуточной аттестации выполнения курсовой						
работы/проекта- защиты – не предусмотрено						

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Таблица 4 Критерии оценивания учебных достижений обучающихся

Результаты	Критерии оценивания учебных достижений, обучающихся на		
обучения	соответствие результатам обучения/индикаторам		
Знания	Студент демонстрирует знания и понимание в области изучения на		
	уровне указанных индикаторов и необходимые для продолжения		
	обучения и/или выполнения трудовых функций и действий,		
	связанных с профессиональной деятельностью.		
Умения	Студент может применять свои знания и понимание в контекстах,		
	представленных в оценочных заданиях, демонстрирует освоение		
	умений на уровне указанных индикаторов и необходимых для		
	продолжения обучения и/или выполнения трудовых функций и		
	действий, связанных с профессиональной деятельностью.		
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне		
	указанных индикаторов.		
Другие результаты	Студент демонстрирует ответственность в освоении результатов		
	обучения на уровне запланированных индикаторов.		
	Студент способен выносить суждения, делать оценки и		
	формулировать выводы в области изучения.		
	Студент может сообщать преподавателю и коллегам своего уровня		
	собственное понимание и умения в области изучения.		

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)				
No	Содержание уровня	Шкала оценивания			
п/п	выполнения критерия	Традиционная		Качественная	
	оценивания результатов	характеристика	характеристика уровня		
	обучения			ка уровня	
	(выполненное оценочное				
	задание)				
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)	
	(индикаторы) достигнуты в	(80-100 баллов)			
	полном объеме, замечаний нет				
2.	Результаты обучения	Хорошо		Средний (С)	
	(индикаторы) в целом	(60-79 баллов)			
	достигнуты, имеются замечания,				
	которые не требуют				
	обязательного устранения				
3.	Результаты обучения	Удовлетворительно		Пороговый (П)	
	(индикаторы) достигнуты не в	(40-59 баллов)			
	полной мере, есть замечания				
4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный	
	не соответствует индикаторам,	НО	зачтено	(H)	
	имеются существенные ошибки и	(менее 40 баллов)			
	замечания, требуется доработка				
5.	Результат обучения не достигнут,	Недостаточно свид	етельств	Нет результата	
	задание не выполнено	для оценивания			

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекшии

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Практические/семинарские занятия

Примерный перечень тем

- 1. Назначение и классификация машин в зависимости от вида обработки металлов давлением.
- 2. Современное состояние и перспективы развития прокатного, волочильного, прессового и кузнечно-штамповочного оборудования
- 3. Основные детали и механизмы рабочей клети, их назначение. Расчет рабочей клети на опрокидывание.
 - 4. Валки прокатных станов: основные виды, материал, способы изготовления
 - 5. Стойкость валков и пути ее увеличения. Эксплуатация, хранение и учет валков.

- 6. Транспортные средства прокатных станов. Манипуляторы и кантователи обжимных, сортовых и листовых станов: назначение и основные конструкции
- 7. Особенности конструкции рабочих клетей и главных линий трубопрокатных станов. Станы холодной прокатки труб (ХПТ и ХПТР).
 - 8. Особенности оборудования для транспортировки, резки и отделки прокатанных труб.
 - 9. Классификация волочильных станов.
 - 10. Волочильные станы с наматыванием обрабатываемого металла на барабан.
 - 11. Станы однократного и многократного волочения.
- 12. Кинематические схемы, конструкции, работа и техническая характеристика указанных станов.
- 13. Принцип расчета основных узлов и деталей волочильных станов. Волочильного станы прямого волочения. Кинематические схемы, конструкции, работа и техническая характеристика
 - 14. Расчет мощности привода волочильного стана.
 - LMS-платформа не предусмотрена

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа № 1

Примерный перечень тем

1. Описание основных узлов рабочей клети

Примерные задания

Вопросы

- 1. Как устроена рабочая клеть прокатного стана? Какие механизмы входят в ее состав?
 - 2. Какие клети называют предварительно напряженными?
 - 3. Из каких деталей состоит узел рабочих валков?
- 4. Для чего предназначены устройства установки и уравновешивания валков?
- 5. Какие методы расчета станин на прочность и жесткость вам известны?
- 6. Обоснуйте необходимость применения предохранительных устройств в рабочей клети стана.
- 7. Что представляют собой проводки и для чего они используются?
- 8. В каких случаях и у каких типов прокатных станов устанавливаются петлеобразователи?
- Как контролируют натяжение полосы между рабочими клетями стана?
- 10. Что означает термин «перевалка»? Как перевалка выполняется в производственных условиях?
- 11. Какие способы и устройства для измерения силы прокатки вам известны?
- 12. Чем индивидуальный привод рабочих валков прокатного стана отличается от группового, адаптивный от рекуперативного?
- 13. Перечислите положительные моменты объединения электродвигателя и редукторной части в мотор-редуктор.
- 14. Как устроена шестеренная клеть и чем она отличается от редуктора?
 - 15. Какие конструкции шпинделей вы знаете?

LMS-платформа – не предусмотрена

5.2.2. Контрольная работа № 2

Примерный перечень тем

1. Станины рабочих клетей. Шестерённые клети и становые редукторы. Примерные задания

Станины рабочих клетей. Шестерённые клети и становые редукторы.

1.Общие сведения

Станину закрытого типа рассматривают как жесткую статически неопределимую раму, состоящую из двух одинаковых стоек и двух поперечин, которые могут быть прямоугольной формы, со скругленными углами или полукруглыми (рисунок 6.1)[3].

В общем случае в станине можно выделить три опасных сечения: поперечное сечение нижней поперечины (см. рисунок 6.1, сечение I-I,), поперечное сечение стойки (сечение II-II), поперечное сечение верхней поперечины (сечение III - III,) и поперечное сечение в месте сопряжения стойки с верхней поперечиной (сечение IY-IY на рис. 6.1,6 и в) [2]. Типичная форма указанных сечений представлена на рисунке 6.2.

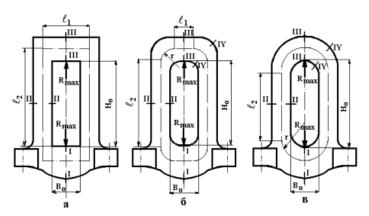


Рисунок 6.1. Расчетная схема станины закрытого типа[2]

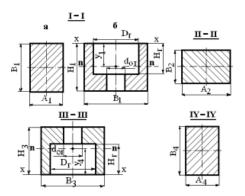


Рисунок 6.2. Форма характерных стоек станины и поперечин станин [2]

Для каждого опасного сечения, в зависимости от его формы (см. рис. 7.2), выполняют расчет площади поперечного сечения, координаты центра тяжести, момента инерции и момента сопротивления изгибу [8].

Опасное сечение I-I может быть сплошным прямоугольным (см. рис. 7.2,а) или с вырезами под нажимную гайку (см. рис. 7.2,б).

Для сплошного поперечного сечения нижней поперечины указанные параметры рассчитывают по формулам:

площадь сечения

$$F_1 = A_1 B_1, \tag{6.1}$$

момент инерции

$$J_1 = \frac{A_1 B_1^3}{12},\tag{6.2}$$

координата центра тяжести

$$Y_1 = \frac{B_1}{2},\tag{6.3}$$

момент сопротивления изгибу

$$W_1 = \frac{A_1 B_1^2}{6},\tag{6.4}$$

Для сечения с вырезами под нажимную гайку и винт (см. рисунок 6.2,б) расчет ведут по формулам

площадь сечения

$$F_1 = H_1 B_1 - H_r D_r - (H_1 - H_r) d_{o\tau},$$
 (6.5)

статический момент относительно оси x-x, проходящей через верхнее основание сечения

$$S_1 = 0.5[B_1H_1^2 - H_{\Gamma}D_{\Gamma}^2 - d_{\text{ot}}(H_1^2 - H_{\Gamma}^2)], \tag{6.6}$$

координата центра тяжести

$$Y_1 = \frac{S_1}{F_1},\tag{6.7}$$

момент инерции сечения относительно нейтральной оси, проходящей через центр тяжести

$$J_{1} = \frac{B_{1}H_{1}^{3}}{12} + \left(\frac{H_{1}}{2} - Y_{1}\right)H_{1}B_{1} - \frac{d_{\text{or}}(H_{1} - H_{\Gamma})}{12} - \left(\frac{H_{1} + H_{\Gamma}}{2}\right)(H_{1} - H_{\Gamma})d_{\text{or}} - \frac{D_{\Gamma}H_{\Gamma}^{3}}{12} - \left(\frac{H_{\Gamma}}{2} - Y_{1}\right)^{2}D_{\Gamma}H_{\Gamma}, (6.8)$$

момент сопротивления изгибу

$$W_1 = \frac{J_1}{Y_1},\tag{6.9}$$

Опасное сечение II-I

$$F_2=A_2B_2$$
, (6.10)

$$J_2 = \frac{B_2 A_2^3}{12}$$
, (6.11)

$$W_2 = \frac{B_2 A_2^2}{6}, (6.12)$$

Опасное сечение III-III

$$F_{3}=H_{3}B_{3}-H_{r}D_{r}-(H_{3}-H_{r})d_{o\tau}, \qquad (6.13)$$

$$S_{3}=0,5[B_{3}H_{3}^{2}-H_{r}D_{r}^{2}-d_{o\tau}(H_{3}^{2}-H_{\Gamma}^{2})], \qquad (6.14)$$

$$Y_{3}=\frac{S_{3}}{F_{3}},(6.15)$$

$$J_{3}=\frac{B_{3}H_{3}^{3}}{12}+\left(\frac{H_{3}}{2}-Y_{3}\right)H_{3}B_{3}-\frac{d_{o\tau}(H_{3}-H_{r})}{12}-\left(\frac{H_{3}+H_{r}}{2}\right)(H_{3}-H_{r})d_{o\tau}-\frac{D_{r}H_{r}^{3}}{12}-\left(\frac{H_{r}}{2}-Y_{3}\right)^{2}D_{\Gamma}H_{r},(6.16)$$

$$W_{3}=\frac{J_{3}}{Y_{2}},(6.17)$$

Опасное сечение ІУ-ІУ

$$F_4 = A_4 B_4,$$
 (6.18)

$$J_4 = \frac{A_4 B_4^3}{12},\tag{6.19}$$

$$Y_4 = \frac{B_4}{2},\tag{6.20}$$

$$W_4 = \frac{A_4 B_4^2}{6}.(6.21)$$

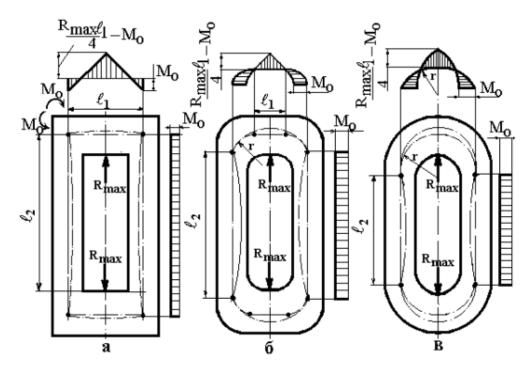


Рисунок 6.3. Эпюры изгибающих моментов в станинах закрытого типа [2]

Под действием силы R_{max} в углах жесткой рамы возникают статически неопределимые изгибающие моменты M_0 , действующие в направлении, показанном на рис. 6.3. Эти моменты изгибают стойки станины внутрь окна, а поперечины - по направлению действия силы R_{max} .

Статически неопределимый момент M_0 рассчитывают в зависимости от формы поперечины станины по формулам:

- для прямоугольной поперечины

$$M_0 = \frac{R_{max}l_1}{8} \cdot \frac{1}{1 + \frac{l_2}{l_1} \frac{J_1}{l_2}}$$
 (6.21)

для поперечины с закругленными углами

$$M_0 = \frac{R_{max}\left[\frac{l_1^2}{8J_3} + \frac{r^2}{J_4}\left(\frac{\pi}{2} - 1\right) + \frac{l_1r}{2J_3}\right]}{\frac{l_1}{J_3} + \frac{l_2}{J_2} + \frac{\pi r}{J_4}},\tag{6.22}$$

- для станины с полукруглой поперечиной

$$M_0 = \frac{R_{max}r(\frac{\pi}{2}-1)}{\pi + \frac{l_2}{J_2} + \frac{J_4}{r}},\tag{6.23}$$

где l_1 - длина поперечины по нейтральной линии; l_2 - длина стоек по нейтральной линии; r - радиус закругления углов станины по нейтральной линии. Параметры l_1 и l_2 определяют по формулам:

для прямоугольной станины

$$l_1=B_0+A_2$$
, $l_2=H_0+Y_3+Y$, (6.24)

для станины с закругленными углами

$$l_1=B_0+A_2-2r$$
, $l_2=H_0+Y_3+Y-2r$ (6.25)

для станины с полукруглой поперечиной

$$l_1=0$$
, $l_2=H_0+Y_3+Y-2r$, (6.26)

Под действием статически неопределимого момента M_0 и силы R_{max} в поперечинах возникают напряжения изгиба, а в стойках - напряжения изгиба и растяжения.

Эти напряжения в опасных сечениях станины любойформы рассчитывают по формулам:

в нижней поперечине

$$\sigma_1 = \frac{\frac{R_{max}l_1}{4} - M_0}{W_1}, \ (6.27)$$

в стойках

$$\sigma_2 = \frac{R_{max}}{2F_2} + \frac{M_0}{W_2}, (6.28)$$

в верхней поперечине

$$\sigma_3 = \frac{\frac{R_{max}l_1}{4}M_0}{W_2}, \quad (6.29)$$

Для каждого опасного сечения проверяют выполнение условия прочности. Допустимый коэффициент запаса прочности для станины принят равным 10.

2. Цель работы

Научиться производить расчеты на прочность станин закрытого типа клетей прокатных станов, изучить основы и основные алгоритмы данных расчетов. Ознакомится в ходе расчета с сопутствующими справочными данными, их правильному использованию и применению.

3. Вопросы для подготовки к практической работе

- 1. Понятие прочности. Классификация
- 2. Станины прокатных станов. Их классификация и назначение
- 3. Достоинства и недостатки станин открытого типа
- 4. Достоинства и недостатки станин закрытого типа
- 4. Опасные сечения станин закрытого типа и схемы их нагружения

4. Задания для выполнения практической работы

5.

Рассчитать на прочность станину закрытого типа рабочей клетистана холодной прокатки. Форма и размеры опасных сечений станины показаны на рисунки 6.1-6.3. Станина изготовлена из литой стали марки 35Л. Усилие прокатки на поперечины станины действует сила R_{max} , МН.

Варианты для выполнения практической работы 6 приведены в таблице 6.1.

Таблица 6.1. Варианты для выполнения практической работы 6

N	$R_{max}MH$	A ₁ , M	В ₁ , м	A ₂ , M	В ₂ , м	Н ₃ , м	В ₃ , м	Н _г , м	D _г , м	d _{от} , м	А ₄ , м	В ₄ , м	В ₀ , м	Н ₀ , м	r, m
1	17	0.8	1.2	0.85	0.8	1.3	1.8	0.9	0.9	0.6	0.8	1	1.8	6.5	0.4
2	15	0,82	1,22	0,875	0,82	1,35	1,85	0,9	0,9	0,6	0,8	1,05	1,85	6,65	0,4
3	20	0,84	1,25	0,9	0,85	1,35	1,9	0,95	0,95	0,6	0,85	1,05	1,9	6,8	0,42
4	30	0,88	1,30	0,95	0,85	1,45	2	1	1	0,65	0,88	1,1	1,95	7,15	0,45
5	30	0,92	1,35	1	0,9	1,5	2,05	1,05	1,05	0,7	0,9	1,15	2,	7,5	0,48
6	35	0,96	1,45	1,02	0,95	1,55	2,2	1,1	1,1	0,7	0,95	1,20	2,15	7,8	0,48
7	20	0,76	1,15	0,8	0,75	1,25	1,7	0,85	0,85	0,5	0,75	0,95	1,7	6,2	0,38
8	13	0,72	1,05	0,75	0,72	1,15	1,6	0,8	0,8	0,5	0,7	0,90	1,65	5,85	0,35
9	14.5	0,64	1	0,65	0,65	1,05	1,45	0,7	0,7	0,5	0,65	0,80	1,45	5,20	0,32
10	10	0,60	0,90	0,65	0,60	1	1,35	0,7	0,7	0,45	0,60	0,75	1,35	4,85	0,30

LMS-платформа – не предусмотрена

5.2.3. Домашняя работа № 1

Примерный перечень тем

1. Расчет на прочность деталей рабочих клетей Примерные задания

Расчет на прочность рабочего валка

Расчет ведем согласно [1].

Исходные данные для расчета:

- 1. Максимальное усилие прокатываемого металла на валок при установившемся процессе прокатки – P = 4234 кH;
- 2. Максимальный крутящий момент на валке при установившемся процессе прокатки \underline{M}_{xy} = 417 $\underline{\kappa} H \cdot \underline{M}$;
 - 3. Диаметр валка в месте приложения силы <u>P</u> $_{-}$ D = 1350 мм;
 - 4. Число оборотов валка в минуту n = 60 об/мин;
 - 5. Угол между линией действия силы P и вертикальной плоскостью $\delta = 12^{\circ};$
 - 6. Расстояние между опорами валка 1 = 1650 мм.

Осевое усилие Т, передаваемое от прокатываемого металла на валок при установившемся процессе прокатки, определяют расчетом по формуле:

$$T = 0.35 \cdot P = 0.35 \cdot 4234 = 1482$$
 кН.

Момент M, действующий в центре балки, можно определить по следующей формуле:

$$M = T \cdot \frac{D}{2} = 1482 \cdot \frac{1,35}{2} = 1000 \text{ кH} \cdot \text{м}.$$

Так как валок развернут на угол раскатки $\delta = 12^0$, то максимальное усилие, лействующее от металла на валок, определяется формулой:

$$P = P_{max} \cdot cos12^{\circ} = 4234 \cdot cos12^{\circ} = 3573 \text{ kH}.$$

Расчетная схема валка приведена на рисунке 17.

Рассчитаем силы реакции опор балки R_1 и R_2 по формуле (20):

$$R_1 = \frac{P \cdot x_1}{1} - \frac{M}{x_1},\tag{20}$$

где l – расстояние между опорами валка;

x₁ – расстояние от точки приложения силы до опоры R₁.

$$n_{A-A} = \frac{620}{2,7} = 229,6.$$

Условне статической прочности выполняется, так как расчетные коэффициенты запаса прочности превышают рекомендуемое значение [n] = 5. Можно сделать вывод, что самым слабым элементом валка является концевая часть валка.

6.2 Расчет на жесткость рабочего валка

В общем виде деформация валковой системы определяется формулой (24):

$$f_{\text{Ba}\pi} = f_1 + f_2,$$
 (24)

где f_1 — деформация прогиба валка;

 ${\bf f}_2 - {\bf c}$ двиговая деформация от действия поперечных сил.

Максимальный прогиб валка прошивного стана под действием усилия прокатки Р будет иметь место посередине бочки. Слагаемые \mathbf{f}_1 и \mathbf{f}_2 рассчитываются по формулам (25) и (26):

$$f_1 = \frac{P \cdot l^3}{E \cdot I \cdot 48'} \tag{25}$$

где Е – модуль нормальной упругости (E = 2,15·10 5 МПа);

I – момент инерции;

1 – расстояние между опорами валка.

$$f_2 = \frac{P \cdot l}{4 \cdot G \cdot F_{\text{Ballk}}},\tag{26}$$

где G — модуль упругости на сдвиг (G = 0,8 · 10 5 МПа);

 ${\sf F}_{\tt Bark}$ – площадь поперечного сечения валка в месте приложения силы.

Момент инерции находим по следующей формуле:

$$I = \frac{\pi \cdot D^4}{64} = \frac{3,14 \cdot 1,35^4}{64} = 162 \cdot 10^{-3} \text{m}^4.$$

Площадь поперечного сечения валка равна:

$$F_{\text{bajk}} = \frac{\pi \cdot D^2}{4} = \frac{3,14 \cdot 1,35^2}{4} = 1,43 \text{m}^2.$$

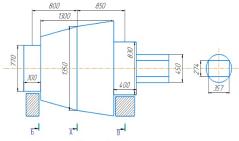


Рисунок 17 – Схема валка.

Тогда, подставляя значения в формулу (20):

$$R_1 = \frac{3573 \cdot 0,85}{1,65} - \frac{1000}{0,85} = 664 \text{ kH}.$$

Аналогично для R₂ – формула (21):

$$R_2 = \frac{P \cdot x_2}{1} - \frac{M}{x_2},\tag{21}$$

где ${\bf x}_2$ – расстояние от точки приложения силы до опоры ${\bf R}_2.$

Подставим значения в формулу (21) и получим:

$$R_2 = \frac{3572 \cdot 0.8}{1.65} - \frac{1000}{0.8} = 482 \text{ kH}.$$

Рассмотрим опасные сечения А-А, Б-Б, В-В на рисунке 17.

Сечение А-А

Напряжения изгиба и кручения в бочке валка рассчитывается по следующим формулам:

$$\sigma_{\text{\tiny M3TA-A}} = \frac{M}{W_1} = \frac{R_1 \cdot x_1}{0.1 \cdot D^3} = \frac{664 \cdot 0.85}{0.1 \cdot 1.35^3} = 2.3 \ \text{Мпа;}$$

В итоге, подставляя значения в формулы (25) и (26), получаем:

$$\begin{split} f_1 &= \frac{4234 \cdot 10^3 \cdot 1,35^2}{2,15 \cdot 10^5 \cdot 162 \cdot 10^{-3} \cdot 48} = 62,3 \cdot 10^{-3} \text{mm}; \\ f_2 &= \frac{4234 \cdot 10^3 \cdot 1,35}{4 \cdot 0,8 \cdot 10^5 \cdot 1,43} = 12,5 \cdot 10^{-3} \text{mm}. \end{split}$$

Упругая деформация валковой системы согласно равна:

$$f_{\text{bar}} = 62.3 \cdot 10^{-3} + 12.5 \cdot 10^{-3} = 74.8 \cdot 10^{-3} \text{mm}.$$

Сравним полученное значение упругого прогиба с допускаемым: $f_{\text{вал}} \leq [f] = 0.3 \dots 1 \, \text{мм-условие выполняется}.$

Выбор подшипников качения

Выбор подшипников на выходной стороне валка.

Днаметр шейки рабочих валков d=447 мм. Днаметр отверстия подушек D=635 мм. Исходя из этих размеров, рабочий валок обжимного стана устанавливают на радиально-упорный конический четырехрядный роликоподшипник № 77890ХКМ.

Роликоподшипник изображен на рисунке 18. Материал подшипника — ШX-15. Угол α = 25°. Смазка подшипников густая, централизованная.

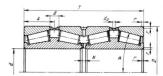


Рисунок 18 — Радиально-упорный конический четырехрядный роликоподшипник

Долговечность радиально-упорного конического четырехрядного роликоподшипника определяется по формуле (27):

$$L_{10} = (\frac{C}{p})^{10/3}, \tag{27}$$

$$\tau_{\kappa p A-A} = \frac{M_{\kappa p}}{W_{p1}} = \frac{M_{\kappa p}}{0.2 \cdot D^3} = \frac{417}{0.2 \cdot 1.35^3} = 0.85 \; \text{Mpa}.$$

Результирующее напряжение в сечении А-А определим по формуле:

$$\sigma_{\text{peз}} = \sqrt{\sigma^2 + 3 \cdot \tau^2} = \sqrt{2,3^2 + 3 \cdot 0,85^2} = 2,7$$
 Мпа.

Сечение Б-Б

Напряження изгиба и кручення в приводной шейке валка рассчитывается по следующим формулам:

тея по следующим формулам:
$$\sigma_{\text{мэгБ-Б}} = \frac{M_{\text{мэг}}}{W_2} = \frac{R_1 \cdot l_{\text{uu}}}{0,1 \cdot d_{\text{ut}}^2} = \frac{664 \cdot 0,3}{0,1 \cdot 0,773} = 4.4 \, \text{Мпа;}$$

$$\tau_{\text{крБ-Б}} = \frac{M_{\text{кp}}}{W_{\text{p1}}} = \frac{M_{\text{кp}}}{0,2 \cdot d_{\text{ut}}^2} = \frac{417}{0,2 \cdot 0,773} = 4.6 \, \text{Мпа.}$$

Результирующее напряжение в сечении Б-Б:

$$\sigma_{\text{резБ-Б}} = \sqrt{4,4^2 + 3 \cdot 4,6^2} = 9,1$$
 Мпа.

Сечение В-В

Напряжения в приводной части валка (сечение В-В рис.17) рассчитываются следующим образом. Лопасть на приводном конце можно представить в виде прямоугольника b·h и двух сегментов F_c :

$$F = b \cdot h = 274 \cdot 357 = 97\,818\,\text{mm}^2;$$

$$\begin{aligned} F_c &= \frac{R^2}{2} \cdot (2\alpha - \sin 2\alpha) = \frac{225^2}{2} \cdot \left(2 \cdot \arcsin\left(\frac{357}{450}\right) - \sin\left(2 \cdot \arcsin\left(\frac{357}{450}\right) \right) \right) = \\ &= 21.935 \text{ mm}^2 \cdot \end{aligned}$$

$$F_{\text{общ}} = F + F_c = 97818 + 21935 = 119753 \text{ mm}^2;$$

$$y_c = \frac{2}{3} \cdot \frac{R^3 sin^3 \alpha}{F_c} = \frac{2}{3} \cdot \frac{b^3}{8F_c} = \frac{b^3}{12F_c} = \frac{357^3}{12 \cdot 21935} = 172.9 \text{ mm}.$$

Заменим сечение A-A (рнс.17) приводного окончания прямоугольником с высотой H = $2 \cdot y_{\rm C} = 2 \cdot 172,9 = 358,4$ мм. Момент инерции сечения на кручение при $\eta = 0.21$ и $H/b \approx 1$:

$$W_{\kappa p} = \eta \cdot b^3 \approx \eta \cdot H^3 = 0.21 \cdot 358.4^3 = 9.668 \cdot 10^3 \text{ mm}^3.$$

Напряжение кручения определим по формуле (22):

где С – динамическая радиальная грузоподъемность;

Р – динамическая эквивалентная радиальная нагрузка.

Динамическая эквивалентная осевая нагрузка определяется формулой (28):

$$P = F_a \cdot K_b \cdot K_T, \qquad (28)$$

где K_5 , — динамический коэффициент, для нагрузки с умеренными толчками и вибрацией, кратковременными перегрузками до 150% от нормальной: $K_5 = 1.3$.

 K_T — температурный коэффициент, для рабочей температуры 175°C: $K_T = 1,15;$

 F_a – нагрузка на опору, $F_a = R_1 = 664 \text{кH}$.

В итоге, подставляя значения в формулу (28), получаем:

$$P = 664 \cdot 1.3 \cdot 1.15 = 992.7 \, \kappa H.$$

Динамическая радиальная грузоподъемность равна C = 6780 кH.

Тогда номинальная долговечность равна:

$$L_{10} = \left(\frac{6780}{992,7}\right)^{10/3} = 605$$
 млн. об.

$$L_{10h} = \frac{10^6}{60 \cdot n} \cdot \left(\frac{C}{P}\right)^{10/3} = \frac{10^6}{60 \cdot n} \cdot L_{10} = \frac{10^6}{60 \cdot 60} \cdot 605 = 168\ 056\ \text{ч}.$$

Подшипник рассчитан на $605 \, \underline{\text{млн.об.}}$, что составляет примерно $168 \, 056$ рабочих часов при средней частоте врашения $n=60 \, o5/$ мин и при умеренных толчках, вибращин и кратковременной перегрузке до 150%.

Выбор подшипников на входной стороне валка.

Диаметр шейки рабочих валков d = 530 мм. Диаметр отверстия подушек D = 880 мм. Исходя из этих размеров, рабочий валок обжимного стана устанавливают на радиально-упорный конический четырехрядный роликоподшипник № 30777/530М.

$$\tau_{\text{max}} = \frac{M_{\text{kp}} \cdot k}{W_{\text{vn}}},$$
(22)

где k=1,2- коэффициент концентрации в месте сопряжения плоскости (дыски) лопасти с валом.

После подстановки значений формулу (22) получим:

$$\tau_{\rm max} = \frac{417 \cdot 10^3 \cdot 1,2}{9,668 \cdot 10^{-3}} = 51,8 \ \text{Мпа}.$$

Расчетный коэффициент запаса прочности n должен превышать допустимое значение [n] (формула (23):

$$n = \frac{\sigma_B}{\sigma} \ge [n]$$
 или $n = \frac{\tau_B}{\sigma} \ge [n],$ (23)

где σ и τ – расчетные нормальные и касательные напряжения соответственно;

[σ] и [τ] – допускаемые нормальные и касательные напряжения;

 g_B и g_B — предел прочности материала по нормальным и касательным напряжениям;

[п] – допустимый коэффициент запаса прочности.

Допустимое значение коэффициента запаса прочности для всех деталей клети, кроме станины, принимают равным 5, а для станины как наиболее ответственного элемента прокатного стана [n] = 10.

Предел прочности материала валков для легированной стали 45X составляет $\underline{\sigma}_a = 620$ МПа и на кручение $\underline{\tau}_a = 0.7 \cdot \sigma_a = 0.7 \cdot 620 = 434$ МПа.

С учетом полученных напряжений определим коэффициент запаса прочности в каждом элементе валка по формуле (23):

- в концевой части валка

$$n_{B-B} = \frac{620}{51.8} = 11.9;$$

- в шейке валка

$$n_{B-B} = \frac{620}{9.1} = 68,1;$$

- в бочке валка

Роликоподшипник также изображен на рисунке 18. Материал подшипника – IIIX-15. Угол α = 25°. Смазка подшипников густая, централизованная.

Долговечность радиально-упорного конического четырехрядного роликоподшипника определяется также по формуле (27). Динамическая эквивалентная осевая нагрузка определяется по формуле (28), где F_a — нагрузка на опору, F_a = R_2 = 482кH.

В итоге, подставляя значения в (28), получаем

Динамическая радиальная грузоподъемность равна С = 10 840 кН.

Тогда номинальная долговечность по формуле (27):

$$L_{10} = \left(\frac{10840}{482}\right)^{10/3} = 32\ 108$$
 млн. об.

Номинальная долговечность подшипника в рабочих часах при постоянной частоте воаппения n = 60 об/мин.

$$L_{\rm 10h} = \frac{10^6}{60 \cdot \rm n} \cdot \left(\frac{C}{P}\right)^{10/3} = \frac{10^6}{60 \cdot \rm n} \cdot L_{\rm 10} = \frac{10^6}{60 \cdot 60} \cdot 32108 = 8\,918\,889 \, \text{ч}.$$

Подшипник рассчитан на 32 108 млн.об., что составляет примерно 8 918 889 рабочих часов при средней частоте врашения n=60 об/мин и при умеренных толчках, вибрации и кратковременной перегрузке до 150%.

Подшипники рассчитаны при таком условии, что стан будет эксплуатироваться при максимальном усилии прокатки $P=4\ 234\ kH$ на один валок.

6.4 Расчет шпинделя на прочность

Материал шпинделя и крестовины — Ст45, предел прочности по касательным напряжениям — $\tau_{\rm s}=420$ МПа. Схема сил, действующих на шпиндель и крестовину представлена на рисунке 19.

Тело шпинделя работает только на кручение, и напряжение в любом сечении между его головками будет равно:

$$\tau = \frac{M_{\kappa p}}{W} = \frac{M_{\kappa p}}{0.2 \cdot D^3} = \frac{417}{0.2 \cdot 0.406^3} = 31.6 \text{ MTa.}$$

Условие прочности для шпинделя выполняется.

Коэффициент запаса прочности в теле шпинделя равно:

$$n = \frac{420}{31,6} = 13,3 \ge [n] = 5.$$

Выполним проверочный расчет крестовины на прочность. Условие прочности выглядит следующим образом: $M_{\kappa p} \leq [M]$.

Допускаемый крутящий момент на крестовину шпинделя можно определить по формуле (29):

$$[M] = \tau \cdot 0.5 \cdot e \cdot \frac{\pi \cdot d_{\kappa}^2}{4}, \tag{29}$$

где d_{κ} — диаметр лопасти крестовины, $d_{\kappa} = 300$ мм.

Тогда, согласно (29), находим:

$$[\mathsf{M}]_{\kappa p} = 31.6 \cdot 0.5 \cdot 0.512 \cdot \frac{3.14 \cdot 0.300^2}{4} = 571 \; \text{KH} \cdot \text{M}.$$

Согласно условию прочности: 417кН ⋅ м ≤ 571 кН ⋅ м Таким образом условие прочности для крестовины шпинделя выполняется.

Расчет на прочность нажимного винта

Нажимной винт воспринимает усилие реакции на шейку валка от прокатки. Максимальное усилие, воспринимаемое одним нажимным винтом, равно [1]:

$$R_{\text{max}} = \frac{R_1 + R_2}{2} = \frac{664 + 482}{2} = 573 \text{ kH}.$$

Кроме того, винт воспринимает крутящий момент $M_{\rm s}$, который приложен к приводному концу винта. Таким образом, нажимной винт подвергается сжатию и кручению.

Крутящий момент, необходимый для вращения винта рассчитываем по

Напряжение сжатия рассчитываем по следующей формуле:
$$\sigma_{\rm cs} = \frac{4 \cdot R_{\rm max}}{\pi \cdot d_1^2} = \frac{4 \cdot 0.57}{3.14 \cdot 0.22^2} = 15 \ \rm M\Pi a.$$

Суммарные напряжения в винте от совместного действия сжатия и кручения определяем по 4 теории прочности:

$$\sigma_{\Sigma} = \sqrt{\sigma_{\scriptscriptstyle CK}^2 + 3\tau_{\scriptscriptstyle B}^2} = \sqrt{15^2 + 3 \times 11{,}46^2} = 24{,}88~\text{MHz}.$$

Коэффициент запаса прочности винта находим по формуле (33):

$$n = \frac{\sigma_{\rm g}}{\sigma_{\rm r}}.$$
 (33)

Винт изготовлен из стали марки 40Х, предел прочности которой равен $\sigma_{_{\rm B}} = 750$ МПа. Подставляя значения в формулу (33), получим:

$$n = \frac{750}{24,88} = 30 \ge [n] = 5.$$

Условие прочности выполняется, так как расчетное значение коэффициента запаса прочности превышает допустимое.

6.6 Расчет гайки нажимного винта

Гайка находится под действием реакции от усилия прокатки $R_{\rm max} = 573 \, {\rm kH},$ поэтому тело гайки рассчитывается на смятие по поверхности ее опоры на поперечину станины, а резьба гайки рассчитывается на изгиб, смятие и срез.

Материал гайки БрАЖМц10-3-1,5, пределы прочности по нормальным и касательным напряжениям соответственно равны: 🙇 = 600МПа; $\tau_{R} = 360 M\Pi a$.

Напряжение смятия на поверхности соприкосновения гайки с поперечиной станины рассчитываем по формуле (34):

$$\sigma_{cm.r} = \frac{4 \cdot R_{max}}{\pi \cdot (D_r^2 - d_{or}^2)'},$$
(34)

где D_r – наружный диаметр гайки. D_r = 0.36м:

$$M_{\text{s}} = R_{\text{max}} \left[f_{\text{m}} \cdot \frac{d_2}{3} + \frac{d_{\text{cp}}}{2} \cdot \text{tg}(\alpha + \phi) \right], \quad (30)$$

где f_n – коэффициент трения в пяте винта, f_n = 0,23 (густая смазка);

- и угол подъема резьбы;
- ф угол трения в резьбе;
- d₂ диаметр пяты винта;
- d_{ср} средний диаметр резьбы винта.

Для расчета параметра d_{ср} воспользуемся приближенной формулой ${
m d_{cp}}={
m d}-0.75{
m S},$ где ${
m d}-$ наружный диаметр резьбы винта, ${
m d}=0.24~{
m m};$ S — шаг резьбы, S=0.010 м. Тогда $d_{cp}=0.24-0.75\cdot0.010=0.2325$ м.

Угол подъема резьбы равен:

$$\alpha = \text{arctg}\left(\frac{S}{\pi \cdot d}\right) = \text{arctg}\left(\frac{0,010}{3,14 \cdot 0,24}\right) = 0,13 \text{ рад.}$$
 Угол трения в резьбе определяем по формуле (31):

$$\phi = \operatorname{arctg}(f_{\scriptscriptstyle B}),$$
(31)

где f_a – коэффициент трения в резьбе, f_a = 0.1 (жидкая смазка).

Подставляя значения в формулу (31), получим:

$$\phi = \operatorname{arctg}(0,1) = 0,0997$$
 рад.

Необходимый для вращения винта крутящий момент:

$$M_{\text{b}} = 0.573 \cdot \left[0.23 \cdot \frac{0.2}{3} + \frac{0.2325}{2} \cdot \text{tg}(0.13 + 0.0997) \right] = 24.4 \text{ kH} \cdot \text{m}.$$

Напряжение кручения в винте рассчитывается по формуле (32):

$$\tau_{_{B}} = \frac{M_{_{B}}}{0.2 \cdot d_{_{1}}^{3}}, \quad (32)$$

где d₁ – внутренний диаметр резьбы винта.

В случае если в процессе прокатки настройку зазора между валками не производят, то 🚜 принимают равным нулю. Для уверенности в прочности нажимного винта проверим напряжение кручения в теле винта по формуле (32):

 $d_{\text{от}}$ – диаметр отверстия в поперечине станины для прохода нажимного винта, d_{от} = 0,21 м.

В итоге получаем:

$$\sigma_{\text{cm.r}} = \frac{4 \cdot 573 \cdot 10^3}{3,14 \cdot (0,36_{\square}^2 - 0,21_{\square}^2)} = 8,54 \text{ MTa.}$$

Напряжения в витках резьбы гайки определяем по формуле (35):

$$\sigma_{cM} = \frac{R_{max}}{m} \frac{4}{\pi (d^2 - d_{1r}^2)},$$
(35)

где m – число витков в гайке, равное отношению ее высоты $H_{\!\scriptscriptstyle E}$ к шагу резьбы

- d внутренний диаметр резьбы гайки. d = 0.24м;
- d_{1r} наружный диаметр резьбы гайки.

Число витков в гайке равно:

$$m = \frac{0,36}{0,01} = 36.$$

Для определения d_{1r} воспользуемся приближенной формулой:

$$d_{1r} = d - 1.7 \cdot S = 0.24 - 1.7 \cdot 0.01 = 0.223.$$

Напряжение смятия резьбы гайки по формуле (35) равно:

$$\sigma_{_{\text{CM}}} = \frac{0,\!573}{36} \cdot \frac{4}{3,\!14 \cdot (0,24^2 - 0,\!223_{\square}^2)} = 2,\!59 \text{ Mpta}.$$

Напряжение изгиба в резьбе рассчитываем по формуле (36):

$$\sigma_{_{\text{H3}}} = \frac{R_{\text{max}}}{m} \cdot \frac{1.5 \cdot \left(d^{\square} - d_{1r}^{\square}\right)}{\pi \cdot d \cdot B^{2}}, \tag{36}$$

где В – ширина витка резьбы у основания, В = 0,008 м.

Напряжение изгиба в резьбе по формуле (36) равно:

$$\sigma_{_{B3}} = \frac{0,\!573}{36} \cdot \frac{1,\!5 \cdot (0,\!24-0,\!223)}{3,\!14 \cdot 0,\!24 \cdot 0,\!008^2} = 8,\!42 \, \mathrm{MHz}.$$

Напряжение среза в резьбе находим по формуле:

$$\tau_{cp} = \frac{R_{max}}{m} \cdot \frac{1}{\pi \cdot d \cdot B} = \frac{0,573}{36} \cdot \frac{1}{3,14 \cdot 0,24 \cdot 0,008} = 2,64 \text{ MTa}.$$

Рассчитываем коэффициенты запаса прочности. Для поверхности соприкосновения гайки с поперечиной станины коэффициент запаса прочности равен:

$$n_{\text{cm.r}} = \frac{\sigma_{\text{b}}}{\sigma_{\text{cm.r}}} = \frac{600}{8,54} = 70,26 \ge [n] = 5.$$

Для резьбы гайки по напряжениям смятия коэффициент запаса прочности равен:

$$n_{cm} = \frac{\sigma_{_B}}{\sigma_{_{CM}}} = \frac{600}{2,59} = 231,6 \ge [n] = 5.$$

Для резьбы гайки по напряжениям изгиба коэффициент запаса прочности равен:

$$n_{\text{hs}} = \frac{\sigma_{\text{b}}}{\sigma_{\text{hs}}} = \frac{600}{8.42} = 71.3 \ge [n] = 5.$$

Для резьбы гайки по напряжениям среза коэффициент запаса прочности равен:

$$n_{cp} = \frac{\tau_{_B}}{\tau_{_{CD}}} = \frac{360}{2,64} = 136,4 \ge [n] = 5.$$

Результаты расчета свидетельствуют о том, что условия прочности нажимной гайки выполняются.

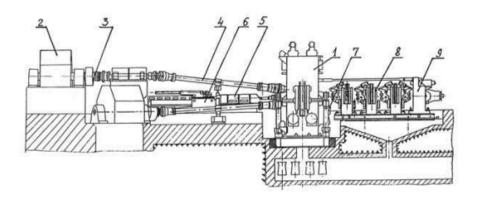
LMS-платформа – не предусмотрена

5.2.4. Домашняя работа № 2

Примерный перечень тем

1. Изучение состава оборудования и определение признаков прокатного стана Примерные задания

Цель работы


Изучение состава оборудования, характеристик и назначения прокатной клети с приводом и определение признаков лабораторного прокатного стана.

3. Используемое оборудование

При выполнении лабораторной работы применяется лабораторный прокатный стан с системой измерения и визуализации энергосиловых параметров (датчики, персональный компьютер).

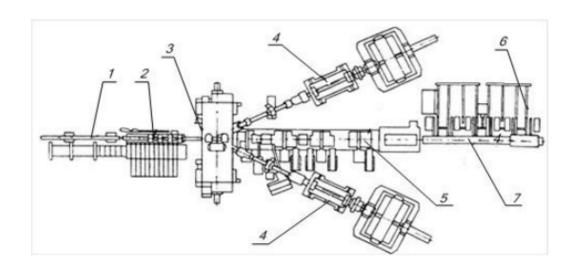

4. Задания для выполнения работы

Схема трехвалкового прошивного стана

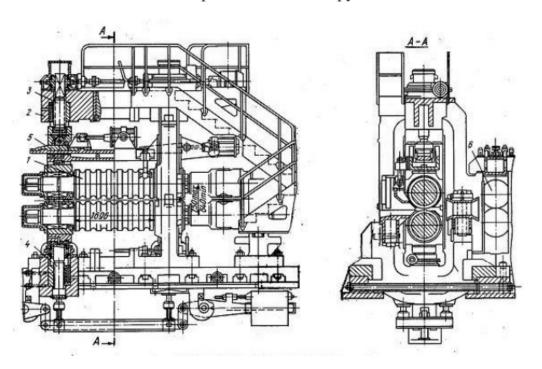

1 – клеть прошивного стана; 2 – приводной электродвигатель; 3 – муфта; 4 – универсальный шпиндель; 5 – приемный желоб; 6 – вталкиватель заготовки; 7 – холостые валки для обкатки конца гильзы; 8 – центрователи стержня; 9 – упорно-регулировочный механизм. [4]

Схема расположения оборудования прошивного стана с индивидуальным приводом валков

1- выталкиватель; 2 - передний стол; 3 - рабочая клеть; 4 - главный привод; 5 - выходная сторона; 6 - качающаяся решетка; 7 – рольганг [4]

Схема расположения оборудования автомат-стана.

1-рабочие валки, 2-станина, 3-нажимной механизм, 4-установочный механизм нижнего валка, 5-клиновой механизм, 6-валки обратной подачи.[8]

Порядок выполнения работы

Под руководством преподавателя студенты изучают составоборудования лабораторного стана, определяют признаки и назначение каждого элемента, изучают измерительную базу: типы и назначение датчиковдля измерения усилия прокатки и мощности привода. Составляется схемапривода в соответствии с реальным приводом.

Разрабатывается структурная схема прокатного стана в составе рабочейклети и привода по ступеням вхождения (1-3).

Содержание отчёта

В отчёте приводится цель работы, основная характеристика лабораторного стана, структурная схема стана, описывается функциональное назначение каждого элемента, описывается принцип работы стана.

Контрольные вопросы

- Какова классификация станов по назначению (видам выпускаемойпродукции)?
- Какова классификация станов по количеству и расположению клетей?
- 3. Какие типы элементов приводов применяются в главных линияхстанов?
 - 4. Что составляет конструктивную основу прокатной клети?
 - 5. Каково назначение нажимных механизмов?
- Для чего необходимо уравновешивающее устройство верхнихкомплектов валков?

LMS-платформа – не предусмотрена

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Экзамен

Список примерных вопросов

- 1. Назначение и классификация машин в зависимости от вида обработки металлов давлением
 - 2. Краткие исторические сведения о развитии машин-орудий для обработки давлением
- 3. м. Современное состояние и перспективы развития прокатного, волочильного, прессового и кузнечно-штамповочного оборудования

- 4. Определение прокатного стана. Понятие об основном и вспомогательном оборудовании
- 5. Классификация станов по назначению, количеству и расположению валков в рабочей клети, по расположению клетей на стане
- 6. Основные детали и механизмы рабочей клети, их назначение. Расчет рабочей клети на опрокидывание.
 - 7. Валки прокатных станов: основные виды, материал, способы изготовления.
 - 8. Стойкость валков и пути ее увеличения. Эксплуатация, хранение и учет валков
 - 9. Подшипники и подушки прокатных валков
- 10. Механизмы и устройства для установки валков: нажимные механизмы, уравновешивающие устройства, устройства для осевой регулировки и фиксации валков
 - 11. Станины рабочих клетей: типы, материал, основа расчета.
 - 12. Валковая арматура рабочих клетей: назначение и основные конструкции.
- 13. Шпиндели и муфты в главной линии прокатного стана: основные виды и конструкции, принципы расчета
 - 14. Шестеренные клети и редукторы: назначение и основные конструкции.
- 15. Общая характеристика и типы электродвигателей привода рабочих клетей. Оценка загрузки электродвигателей главного привода. Маховики.
- 16. Транспортные средства прокатных станов. Манипуляторы и кантователи обжимных, сортовых и листовых станов: назначение и основные конструкции
 - 17. Подъемно-качающиеся столы.
- 18. Сверточно намоточные машины: роликовые моталки, моталки и разматыватели барабанного типа, сортовые моталки.
- 19. Холодильники различных типов, машины для удаления поверхностных дефектов, устройства для пакетирования и обвязки готовых профилей.
- 20. Машины для резки проката: ножницы с параллельными ножами, гильотинные, дисковые и летучие ножницы, дисковые пилы
- 21. Особенности конструкции рабочих клетей и главных линий трубопрокатных станов. Станы холодной прокатки труб (ХПТ и ХПТР).
- 22. Инструмент трубопрокатных станов: цельные и составные валки, оправки, линейки, валковая арматура рабочих клетей.
- 23. Особенности оборудования для транспортировки, резки и отделки прокатанных труб.
 - 24. Классификация волочильных станов.
 - 25. Волочильные станы с наматыванием обрабатываемого металла на барабан
 - 26. Станы однократного и многократного волочения.
- 27. Кинематические схемы, конструкции, работа и техническая характеристика указанных станов.
 - 28. Волоки, волокодержатели, оправки.
 - 29. Их конструкции, материал и обработка
 - 30. Расчет мощности привода волочильного стана
 - 31. Принцип расчета основных узлов и деталей волочильных станов
- 32. Волочильного станы прямого волочения. Кинематические схемы, конструкции, работа и техническая характеристика
 - LMS-платформа не предусмотрена

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.