ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Методы исследования коррозионных и защитных процессов

Код модуля 1158144

Модуль

Оценка коррозионной устойчивости

Екатеринбург

Оценочные материалы составлены автором(ами):

№ п/п	Фамилия, имя, отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Останина Татьяна	доктор	Профессор	технологии
	Николаевна	химических наук,		электрохимических
		профессор		производств

Согласовано:

Управление образовательных программ С.А. Иванченко

Авторы:

• Останина Татьяна Николаевна, Профессор, технологии электрохимических производств

1. СТРУКТУРА И ОБЪЕМ ДИСЦИПЛИНЫ Методы исследования коррозионных и защитных процессов

1.	Объем дисциплины в	3	
	зачетных единицах		
2.	Виды аудиторных занятий	Лекции	
		Лабораторные занятия	
3.	Промежуточная аттестация	Зачет	
4.	Текущая аттестация	Контрольная работа 1	
		Домашняя работа 1	

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ (ИНДИКАТОРЫ) ПО ДИСЦИПЛИНЕ МОДУЛЯ Методы исследования коррозионных и защитных процессов

Индикатор — это признак / сигнал/ маркер, который показывает, на каком уровне обучающийся должен освоить результаты обучения и их предъявление должно подтвердить факт освоения предметного содержания данной дисциплины, указанного в табл. 1.3 РПМ-РПД.

Таблица 1

Планируемые результаты обучения (индикаторы)	Контрольно-оценочные средства для оценивания достижения результата обучения по дисциплине		
2	3		
3-1 - Сделать обзор основных методов моделирования и математического анализа, применимых для формализации и решения задач профессиональной деятельности П-1 - Решать самостоятельно сформулированные практические задачи, относящиеся к профессиональной деятельности методами моделирования и математического анализа, в том числе с использованием пакетов	Домашняя работа Зачет Контрольная работа Лабораторные занятия Лекции		
	2 3-1 - Сделать обзор основных методов моделирования и математического анализа, применимых для формализации и решения задач профессиональной деятельности П-1 - Решать самостоятельно сформулированные практические задачи, относящиеся к профессиональной деятельности методами моделирования и математического анализа, в том		

	У-1 - Самостоятельно сформулировать задачу области профессиональной деятельности, решение которой требует использования методов моделирования и математического анализа	
ОПК-3 -Способен планировать и проводить комплексные исследования и изыскания для решения инженерных задач относящихся к профессиональной деятельности, включая проведение измерений, планирование и постановку экспериментов, интерпретацию полученных результатов	3-1 - Сформулировать основные принципы организации и планирования научного исследования 3-2 - Характеризовать возможности исследовательской аппаратуры и методов исследования, используя технические характеристики и области применения 3-3 - Сделать обзор основных методов статистической обработки и анализа результатов измерений П-1 - Выполнять в рамках поставленного задания экспериментальные комплексные научнотехнические исследования и изыскания для решения инженерных задач в области профессиональной деятельности, включая обработку, интерпретацию и оформление результатов П-2 - Оформить научнотехнический отчет, публикацию научных результатов, документы защиты интеллектуальной собственности в соответствии с нормативными требованиями У-1 - Собирать и анализировать научно-техническую информацию для оптимального планирования исследования и изыскания У-2 - Обоснованно выбрать необходимую аппаратуру и метод исследования для решения инженерных задач, относящихся к	Зачет Контрольная работа Лабораторные занятия Лекции

	профессиональной деятельности	
ПК-5 -Способность применять знания современных теорий протекания коррозионных процессов, для выбора способа защиты металлоконструкций и проведения экспертизы по системам защитных покрыти	3-2 - Формулировать основные риски, связанные с коррозионным разрушением материалов оборудования, в условиях эксплуатации П-2 - Организовывать применение методов и методик при испытаниях, комплектующих/образцов изделий У-2 - Анализировать прецизионность, сходимость и воспроизводимость результатов измерений химического состава, физико-механических свойств образцов комплектующих изделий и материалов	Домашняя работа Зачет Контрольная работа Лабораторные занятия Лекции

3. ПРОЦЕДУРЫ КОНТРОЛЯ И ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ В РАМКАХ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ МОДУЛЯ В БАЛЬНО-РЕЙТИНГОВОЙ СИСТЕМЕ (ТЕХНОЛОГИЧЕСКАЯ КАРТА БРС)

3.1. Процедуры текущей и промежуточной аттестации по дисциплине

Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
домашняя работа	1,18	50
контрольная работа	1,18	50
Весовой коэффициент значимости результатов текуще	й аттестации по ле	<u>кциям – 0.4</u>
	куточной аттестаци начимости совокуї	и по лекциям

Промежуточная аттестация по практическим/семинарским занятиям—нет Весовой коэффициент значимости результатов промежуточной аттестации по практическим/семинарским занятиям— не предусмотрено

3. Лабораторные занятия: коэффициент значимости совокупных результатов лабораторных занятий -0.5

Текущая аттестация на лабораторных занятиях	Сроки – семестр, учебная неделя	Максималь ная оценка в баллах
ЛР1. Использование метода потенциометрии для оценки коррозионных свойств металлов	1,18	20
<i>ЛР2. Определение эффективности защиты с помощью ингибиторов</i>	1,18	20
ЛРЗ. Метод линейного поляризационного сопротивления	1,18	20
ЛР4. Определение контактных токов в металлических покрытиях	1,18	20
ЛР5. Изучение коррозии с применением импедансной спектроскопии	1,18	20

Весовой коэффициент значимости результатов текущей аттестации по лабораторным занятиям -1

Промежуточная аттестация по лабораторным занятиям -нет

Весовой коэффициент значимости результатов промежуточной аттестации по лабораторным занятиям — не предусмотрено

4. Онлайн-занятия: коэффициент значимости совокупных результатов онлайн-занятий –не предусмотрено

Текущая аттестация на онлайн-занятиях	Сроки –	Максималь
	семестр,	ная оценка
	учебная	в баллах
	неделя	

Весовой коэффициент значимости результатов текущей аттестации по онлайнзанятиям -не предусмотрено

Промежуточная аттестация по онлайн-занятиям –нет

Весовой коэффициент значимости результатов промежуточной аттестации по онлайнзанятиям — не предусмотрено

3.2. Процедуры текущей и промежуточной аттестации курсовой работы/проекта

	TITLE TO BUSINESS OF PROOFE	2, 22, 50 0 22 2 40			
Текущая аттестация выполнения курсовой	Сроки - семестр,	Максимальная			
работы/проекта	учебная неделя	оценка в баллах			
Весовой коэффициент текущей аттестации выполнения курсовой работы/проекта- не					
предусмотрено					
Весовой коэффициент промежуточной аттестации выполнения курсовой					
работы/проекта- зашиты – не предусмотрено					

4. КРИТЕРИИ И УРОВНИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ МОДУЛЯ

4.1. В рамках БРС применяются утвержденные на кафедре/институте критерии (признаки) оценивания достижений студентов по дисциплине модуля (табл. 4) в рамках контрольно-оценочных мероприятий на соответствие указанным в табл.1 результатам обучения (индикаторам).

Результаты	Критерии оценивания учебных достижений, обучающихся на		
обучения	соответствие результатам обучения/индикаторам		
Знания	Студент демонстрирует знания и понимание в области изучения на		
	уровне указанных индикаторов и необходимые для продолжения		
	обучения и/или выполнения трудовых функций и действий,		
	связанных с профессиональной деятельностью.		
Умения	Студент может применять свои знания и понимание в контекстах,		
	представленных в оценочных заданиях, демонстрирует освоение		
	умений на уровне указанных индикаторов и необходимых для		
	продолжения обучения и/или выполнения трудовых функций и		
	действий, связанных с профессиональной деятельностью.		
Опыт /владение	Студент демонстрирует опыт в области изучения на уровне		
	указанных индикаторов.		
Другие результаты	Студент демонстрирует ответственность в освоении результатов		
	обучения на уровне запланированных индикаторов.		
	Студент способен выносить суждения, делать оценки и		
формулировать выводы в области изучения.			
Студент может сообщать преподавателю и коллегам с			
	собственное понимание и умения в области изучения.		

4.2 Для оценивания уровня выполнения критериев (уровня достижений обучающихся при проведении контрольно-оценочных мероприятий по дисциплине модуля) используется универсальная шкала (табл. 5).

Таблица 5 Шкала оценивания достижения результатов обучения (индикаторов) по уровням

	Характеристика уровней достижения результатов обучения (индикаторов)				
No	Содержание уровня	Шкала	а оцениван	Вия	
п/п	выполнения критерия	Традиционная		Качественная	
	оценивания результатов	характеристика уровня		характеристи	
	обучения			ка уровня	
	(выполненное оценочное				
	задание)				
1.	Результаты обучения	Отлично	Зачтено	Высокий (В)	
	(индикаторы) достигнуты в	(80-100 баллов)			
	полном объеме, замечаний нет				
2.	Результаты обучения	Хорошо		Средний (С)	
	(индикаторы) в целом	(60-79 баллов)			
	достигнуты, имеются замечания,				
	которые не требуют				
	обязательного устранения				
3.	Результаты обучения	Удовлетворительно		Пороговый (П)	
	(индикаторы) достигнуты не в	(40-59 баллов)			
	полной мере, есть замечания				

4.	Освоение результатов обучения	Неудовлетворитель	Не	Недостаточный
	не соответствует индикаторам,	НО	зачтено	(H)
	имеются существенные ошибки и	(менее 40 баллов)		
	замечания, требуется доработка			
5.	Результат обучения не достигнут,	Недостаточно свид	етельств	Нет результата
	задание не выполнено	для оцениван	ия	

5. СОДЕРЖАНИЕ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МЕРОПРИЯТИЙ ПО ДИСЦИПЛИНЕ МОДУЛЯ

5.1. Описание аудиторных контрольно-оценочных мероприятий по дисциплине модуля

5.1.1. Лекции

Самостоятельное изучение теоретического материала по темам/разделам лекций в соответствии с содержанием дисциплины (п. 1.2. РПД)

5.1.2. Лабораторные занятия

Примерный перечень тем

- 1. Использование метода потенциометрии для оценки коррозионных свойств металлов
- 2. Определение эффективности защиты с помощью ингибиторов
- 3. Метод линейного поляризационного сопротивления
- 4. Определение контактных токов в металлических покрытиях
- 5. Изучение коррозии с применением импедансной спектроскопии
- LMS-платформа не предусмотрена

5.2. Описание внеаудиторных контрольно-оценочных мероприятий и средств текущего контроля по дисциплине модуля

Разноуровневое (дифференцированное) обучение.

Базовый

5.2.1. Контрольная работа

Примерный перечень тем

1. Расчет показателей коррозионных и защитных процессов

Примерные задания

Контрольная работа предполагает решение 3-х задач:

Коррозия металла протекает преимущественно с кислородной деполяризацией.
 Определить весовой и глубинный показатели общей коррозии.

**	on population and a second of the property of									
	Металл	Концентрация	Толщина	Коэффициент	Плотность					
		растворенного	диффузионного	диффузии	железа,					
		кислорода,	слоя, б м	молекулярного	<u>кг</u> /м ³					
		C_{O_n} , $\underline{\pi}/\pi$		кислорода,						
		•		<i>D_{O₂},</i> м²/с						
	Cu	0,062	0,0005	6·10 ⁻¹⁰	8960					

 Определить весовой показатель скорости коррозии, если коррозионный (стационарный) потенциал металла известен. Коррозия протекает с водородной деполяризацией, для расчета кинетических параметров водорода использовать постоянные уравнения <u>Тафеля</u>.

Металл	Коррозионный	а	b	pΗ	Температура, С
	потенциал, В				
Ni	-0,23	0,63	0,11	5	45

 По данным поляризационных исследований определить плотность коррозионного тока и объемный показатель скорости коррозии. Коррозия протекает с водородной деполяризацией. Известны тангенсы углов наклона катодной (b_k) и анодной (b_a) кривых в полулогарифмических координатах E-lni, а также интервал изменения тока (ΔI) в непосредственной близости от коррозионного потенциала при (ΔE).

Металл	Температура, С	b_k , B	b_a ,B	ΔI, мА	ΔE , MB	S, см ²
Ni	30	0,046	0,016	9	165	1,5

LMS-платформа – не предусмотрена

5.2.2. Домашняя работа

Примерный перечень тем

1. Анализ коррозионной устойчивости металлов и выбор методов исследования

Примерные задания

Пример задания на ДР

Цель домашней работы: определить возможный механизм коррозионного процесса металлов в определенной агрессивной среде (по заданию преподавателя), выбрать методы исследования коррозионной устойчивости металла и предложить способы защиты от коррозии.

Домашняя работа включает в себя:

- 1. Описание заданного объекта (металла и среды) на основе литературных данных.
- 2. Определение природы реакции деполяризации путем расчета и сравнения потенциалов ионизации металла и восстановления деполяризаторов
 - 3. Выбор метода исследования коррозионной устойчивости металла.
 - 4. Обосновать способ защиты металла от коррозии

Индивидуальные задания:

1. Характеристика коррозионной устойчивости конструкционных материалов (сталь 3) в промышленной атмосфере.

- 2. Характеристика коррозионной устойчивости конструкционных материалов (сплав никеля) в промышленной атмосфере.
- 3. Характеристика коррозионной устойчивости конструкционных материалов (сплавы алюминия по заданию преподавателя) в промышленной атмосфере.
- 4. Описание коррозионных свойств нерастворимых анодов (сплавов на основе свинца, нержавеющая сталь) в растворах, содержащих серную кислоту.
 - 5. Характеристика коррозионной устойчивости стали в морской воде.
 - 6. Характеристика коррозионной устойчивости цинка в морской воде.

LMS-платформа – не предусмотрена

5.3. Описание контрольно-оценочных мероприятий промежуточного контроля по дисциплине модуля

5.3.1. Зачет

Список примерных вопросов

- 1. Цели коррозионных исследований. Классификация методов коррозионных исследований
 - 2. Основные принципы выбора методов ускоренных коррозионных испытаний
- 3. Основные принципы выбора раствора при проведении ускоренных коррозионных испытаний
 - 4. Требования к подготовке образцов перед проведением коррозионных испытаний
- 5. Измерение стационарных потенциалов. Возможные причины изменения стационарного потенциала в процессе коррозии
 - 6. Оценка механизма процесса деполяризации по значению стационарного потенциала
- 7. Методика коррозионных испытаний при полном погружении образцов в агрессивный раствор
 - 8. Методика коррозионных испытаний при переменном погружении в электролит
 - 9. Методика коррозионных испытаний на атмосферную коррозию
- 10. Особенности электрохимических методов исследования коррозионных и защитных процессов
- 11. Метод поляризационных диаграмм. Вид поляризационной диаграммы для случая коррозии отдельного металла. Определение по диаграммам потенциала и тока коррозии
- 12. Метод поляризационных кривых. Графоаналитический метод определения токов и потенциалов коррозии отдельного металла
- 13. Метод поляризационного сопротивления. Расчет скорости коррозии по уравнению Стерна и Гири
- 14. Параметры, характеризующие эффективность действия протекторов: э.д.с. в системе протектор-сооружение, удельный расход протектора, теоретическая и практическая токоотдача, коэффициент полезного действия
 - 15. Определение склонности сплавов к межкристаллитной коррозии
 - 16. Электрохимические методы исследования питтинговой коррозии

LMS-платформа – не предусмотрена

5.4 Содержание контрольно-оценочных мероприятий по направлениям воспитательной деятельности

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.