Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
ектор по образовательной	Ди	
деятельности		
С.Т. Князев		
С.1. Киизсы	>>>	

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1152581	Теория металлургических систем и процессов

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Металлургия титана	1. 22.03.02/33.03
Направление подготовки	Код направления и уровня подготовки
1. Металлургия	1. 22.03.02

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Лозовая Елизавета	кандидат	Доцент	металлургии железа и
	Юрьевна	технических		сплавов
		наук, доцент		
2	Рогачев Владимир	кандидат	Доцент	металлургии железа и
	Васильевич	технических		сплавов
		наук, доцент		

Согласовано:

Управление образовательных программ

Р.Х. Токарева

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Теория металлургических систем и процессов

1.1. Аннотация содержания модуля

Модуль является теоретической основой изучения технологий получения металлов и сплавов. Обучение направлено на формирование компетенций в области теории металлургических процессов, а также навыков анализа процессов черной металлургии с целью дальнейшего применения полученных знаний и умений в решении конкретных практических задач. Модуль состоит из одноименной дисциплины и включает два тематических раздела «Физикохимия металлургических систем и процессов» и «Физико-химическая гидродинамика и механика сыпучих сред», в которых последовательно изучаются вопросы строения и свойств металлургических систем, термодинамических и кинетических закономерностей взаимодействия и равновесия фаз, основы гидродинамики жидких металлов, газов, механики сыпучих сред, их физико-химических свойств и поверхностных явлений. Дисциплины модуля могут быть реализованы в смешанной и традиционной технологии. Реализация дисциплин модуля с использованием смешанной технологии обучения предполагает применение разработанных электронных ресурсов, размещенных на образовательной платформе УрФУ.

1.2. Структура и объем модуля

Таблина 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1 Теория металлургических систем и процессов		6
	ИТОГО по модулю:	6

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	Не предусмотрены
Постреквизиты и кореквизиты модуля	Не предусмотрены

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблина 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Теория металлургически	ПК-15 - Способен на основе анализа	3-1 - Изложить основные закономерности процессов движения сыпучих сред,
	технологических	жидкости и газов, законы и понятия

х систем и процессов производства легких цветных металлов и их сплавов разрабатывать предложения и рекомендации по их совершенствованию	физической химии применительно к металлургическим агрегатам У-1 - Анализировать химические реакции процессов производства черных металлов, влияние свойств сыпучих сред, жидкостей и газов на протекание металлургических процессов П-1 - Самостоятельно выполнять термохимические расчеты, расчетов параметров движения сыпучих сред, жидкости и газов. Д-1 - Демонстрировать самостоятельность при работе со специальной литературой с целью поиска и анализа современных тенденций в области производства черных металлов
---	---

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной и очно-заочной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория металлургических систем и процессов

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Лозовая Елизавета	кандидат	Доцент	металлургии
	Юрьевна	технических наук,		железа и сплавов
		доцент		
2	Рогачев Владимир	кандидат	Доцент	металлургии
	Васильевич	технических наук,		железа и сплавов
		доцент		

Рекомендовано учебно-методическим советом института Новых материалов и технологий

Протокол № _20210531-01_ от _31.05.2021_ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

Авторы:

1.1. Технологии реализации, используемые при изучении дисциплины модуля

- Традиционная (репродуктивная) технология
- С применением электронного обучения на основе электронных учебных курсов, размещенных на LMS-платформах УрФУ
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания;

Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
P1	Введение	Предмет и задачи курса, его связь со смежными дисциплинами. Значение физической химии для металлургии. Применение термодинамического и молекулярно-кинетического методов для анализа металлургических процессов.
P2	Процессы горения газов и твердого топлива.	Термодинамический и молекулярно-кинетический анализ реакций горения газов. Зависимость равновесного состава газовой фазы от температуры и давления. Цепной механизм процесса. Термодинамический и молекулярно-кинетический анализ реакций горения твердого углерода. Строение графита и его свойства Влияние температуры на скорость и режим горения угля. Температуры воспламенения и тушения угля. Механизм и кинетика взаимодействия графита с кислородом. Состав продуктов реакции в зависимости от температуры. Взаимодействие диоксида углерода с графитом. Влияние температуры и давления на скорость реакции.

Р3	Диссоциация карбонатов, оксидов и сульфидов металлов	Термодинамический анализ процессов диссоциации твердых веществ. Упругость диссоциации соединений. Зависимость упругости диссоциации соединений от температуры, природы катиона, степени дисперсности и агрегатного состояния. Влияние взаимной растворимости конденсированных фаз на упругость диссоциации. Кинетика и механизм процессов диссоциации. Условия зарождения и роста кристаллов новой фазы. Изменение скорости процесса со временем. Автокаталитический характер процесса.
P4	Восстановление металлов из оксидов	Термодинамический анализ восстановления оксидов при помощи СО и Н2 на примере оксидов железа. Влияние температуры на равновесие реакций. Графическое изображение условий равновесия. Сопоставление восстановительной способности монооксида углерода и водорода. Диффузионный, кинетический и смешанный режимы восстановления. Зависимость скорости восстановления от времени, температуры, давления, пористости. Адсорбционно-автокаталитическая теория восстановления. Особенности углетермического восстановления оксидов.
P5	Металлургические расплавы, их строение и свойства	Роль шлаков в металлургических процессах, их состав, структура и классификация. Термодинамические и кинетические свойства жидких шлаков. Экспериментальные основы ионной теории. Теории совершенных и регулярных ионных растворов. Полимерная природа жидких шлаков. Термодинамические и кинетические свойства жидких металлов. Растворимость водорода и азота в жидких металлах.
Р6	Взаимодействие металлургических расплавов	Распределение кислорода, серы и фосфора между металлом и шлаком. Раскисление и его виды. Основы электрохимической кинетики взаимодействия металла со шлаком. Описания скоростей электродных реакций в кинетическом и диффузионном режимах. Использование коррозионных диаграмм при моделировании процесса взаимодействия.
P7	Основные физико- химические свойства жидкостей и газов	Определение жидкости. Плотность металлов, шлаков, расплавов, многофазных смесей. Вязкость жидкостей и газов. Ньютоновские и аномальные жидкости. Коэффициенты динамической и кинематической вязкости, влияние на их величину температуры и давления. Поверхностные явления в расплавах: явление смачивания; вспенивание и физические явления при вспенивании; коалесценция и коагуляция диспергированных частиц;

флотация дисперсной фазы; образование зародышей новой фазы (основы кристаллизации). Равновесие жидкости и газа: Гидростатическое давление и его свойства. Дифференциальное уравнение равновесия жидкости. Уравнение поверхности уровня. Давление жидкости на плоскую поверхность. Давление жидкости на криволинейную поверхность. Распределение давления в покоящейся жидкости. Относительное движение жидкости в поле силы тяжести. Вертикальное перемещение при наличии ускорения. Горизонтальное перемещение без ускорения. Горизонтальное перемещение при наличии ускорения. Поверхность равного давления. Основы кинематики и динамики жидкости и газов: Понятие кинематики жидкостей и газов. Методы Лагранжа и Эйлера. Уравнение неразрывности. Принцип сохранения массы жидкости для любой определенной системы. Уравнение баланса импульса. Принцип сохранения импульса. Уравнение Навье-Стокса. Уравнение Бернулли. Понятие ламинарного и турбулентного режимов движения жидкости . Число Рейнольдса. Турбулентные касательные напряжения и турбулентная вязкость. Потери давления при движении жидкостей и газов: Основные уравнения для расчета потерь энергии при движении жидкости и газа. Потери энергии на трение. Внезапное расширение: Диффузоры. Внезапное сужение: Конфузоры. Потери давления на поворотах. Гидравлический Физико-химическая расчет трубопроводов. **P8** гидродинамика Движение двухфазных потоков в трубопроводах: Течение двухфазных сред. Режимы течения двухфазных потоков. Основы расчета пневмотранспорта. Истечение жидкостей. Истечения жидкостей и газов из отверстий. Гидравлический расчет истечения жидкостей из отверстий. Истечение из малых отверстий. Истечение из емкости. Истечения жидкостей через насадки. Коэффициенты истечения и их зависимость от числа Рейнольдса. Истечение жидкости при переменном уровне. Гидравлический расчет открытых русел. Истечение несжимаемого газа: Понятие несжимаемого газа. Схемы истечения газа. Расчет потерь давления и расхода при истечении газов. Сопло Лаваля. Фильтрация жидкостей и газов: Понятие фильтрации. Идеальный материал. Закон фильтрации. Фильтрационная способность материала. Воздухопроницаемость ограждающих конструкций.

		Лобовое сопротивление:Лобовое сопротивление при обтекании твердого тела. Уравнения для расчета равномерного осаждения (всплывания) твердой сферы в неограниченном объеме вязкой жидкости. Гидравлическая крупность, скорость витания. Осаждение (всплывание) капель жидкости и газовых пузырей.
P9	Механика сыпучих сред	Основы механики сыпучих сред: Физико-механические свойства сыпучих материалов. Основные понятия и определения. Основные закономерности выпуска сыпучих материалов: Средняя скорость истечения сыпучего материала из отверстия. Факторы, определяющие величину расхода сыпучего материала: коэффициент плотности укладки, угол откоса воронки, фильтрация мелких частиц сыпучего материала во время выпуска. Эллипсоид вы-пуска. Эллипсоид разрыхления. Воронка выпуска. Коэффициент вторичного разрыхления. Эллипсоид равных скоростей. Скорость движения частиц без учета затухания ее в зоне разрыхления. Скорость движения частицы в потоке сыпучего материала. Характер распределения скоростей движения частиц. Неравномерность полей скоростей. Влияние удельного веса и размеров частиц сыпучего материала на скорость движения их к выпускному отверстию.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

		T		
Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	учебно- исследовательск ая, научно- исследовательск ая	Технология повышения коммуникативно й компетентности Технология формирования уверенности и готовности к самостоятельной успешной профессиональн ой деятельности Технология самостоятельной работы	ПК-15 - Способен на основе анализа технологических процессов производства легких цветных металлов и их сплавов разрабатывать предложения и рекомендации по их совершенствовани ю	Д-1 - Демонстрировать самостоятельност ь при работе со специальной литературой с целью поиска и анализа современных тенденций в области производства черных металлов

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Теория металлургических систем и процессов

Электронные ресурсы (издания)

1. Добрынина, , Н. Ю., Климова, , А. В.; Электрохимия расплавов : учебное пособие.; Издательство Уральского университета, Екатеринбург; 2018; http://www.iprbookshop.ru/106811.html (Электронное издание)

Печатные издания

- 1. Попель, С. И., Бороненков, В. М., Сотников, А. И.; Теория металлургических процессов : учеб. пособие для вузов.; Металлургия, Москва; 1986 (100 экз.)
- 2. Сотников, А. И., Ватолин, А. Н., Новиков, В. К.; Элементы физической химии металлургических процессов: учеб. пособие для студентов вузов, обучающихся по направлениям подгот. бакалавров и дипломир. специалистов 550500 и 651300 Металлургия.; УГТУ-УПИ, Екатеринбург; 2004 (81 экз.)
- 3., Швыдкий, В. С.; Механика жидкости и газа: учеб. пособие для студентов вузов, обучающихся по направлениям подгот. бакалавров 550550 и дипломир. специалистов 651300 "Металлургия" и 110300 "Теплофизика, автоматизация и экология пром. печей".; Академкнига, Москва; 2003 (245 экз.)
- 4. Альтшуль, А. Д.; Гидравлика и аэродинамика : [учебник для вузов по специальности "Теплогазоснабжение и вентиляция"].; Стройиздат, Москва; 1987 (32 экз.)

Профессиональные базы данных, информационно-справочные системы

https://learn.urfu.ru/subject/index/card/subject_id/3346 - электронный курс "Физико-химическая гидродинамика и механика сыпучих сред"

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

nbmgu.ru/search — Научная библиотека Московского Государственного Университета им. М. В.Ломоносова.

http://e.lanbook.com/ - ЭБС "Лань", издательство "Лань"

http://www.sciencedirect.com/ - Базы данных с полнотекстовыми публикациями в научных периодических изданиях Science Direct

http://www.ebscohost.com/ - Базы данных с полнотекстовыми публикациями в научных периодических изданиях EBSCO

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Теория металлургических систем и процессов

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

7.0			
№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лабораторные занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM
2	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Office Professional 2003 Win32 Russian CD-ROM
3	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Office Professional 2003 Win32 Russian CD-ROM

4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Office Professional 2003 Win32 Russian CD-ROM
5	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Office Professional 2003 Win32 Russian CD-ROM
6	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Персональные компьютеры по количеству обучающихся Подключение к сети Интернет	Office 365 EDUA3 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Office Professional 2003 Win32 Russian CD-ROM