Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
ектор по образовательной	Ди	
деятельности		
С.Т. Князев		
С.1. КПИЗСВ	>>>	

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1153274	Основы физики

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Ядерные реакторы и материалы	1. 14.05.01/22.01
Направление подготовки	Код направления и уровня подготовки
1. Ядерные реакторы и материалы	1. 14.05.01

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Токманцев Валерий Иванович	доктор технических наук, доцент	Заведующий кафедрой	технической физики

Согласовано:

Управление образовательных программ

Р.Х. Токарева

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Основы физики

1.1. Аннотация содержания модуля

Модуль «Основы физики» направлен на формирование научного мировоззрения и современного физического мышления, представления о роли экспериментальных и теоретических методов познания окружающего мира, развитие навыков самостоятельного решения физических задач. Цель модуля — ознакомить с основными экспериментальными фактами, положенными в основу физики; ознакомить с основными физическими законами механики, электричества и магнетизма. Модуль образует дисциплина: Дисциплина «Физика (механика, электричество и магнетизм)» направлена на формирование научного мировоззрения и современного физического мышления, знания основных физических явлений и идей, фундаментальных физических законов и теорий классической и современной физики. Рассматриваются физические модели, теоретические методы построения решения разнообразных задач и методы постановки экспериментов в механике, электричестве и магнетизме.

1.2. Структура и объем модуля

Таблина 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Физика (механика, электричество и магнетизм)	12
	ИТОГО по модулю:	12

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	Не предусмотрены
Постреквизиты и кореквизиты модуля	Не предусмотрены

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Физика (механика, электричество и магнетизм)	ОПК-1 - Способен использовать базовые знания естественнонаучных дисциплин в	3-1 - Привести примеры основных закономерностей развития природы, человека и общества

профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования

- 3-2 Обосновать значимость использования базовых фундаментальных и естественнонаучных дисциплин в формулировании и решении задач профессиональной деятельности
- У-1 Использовать понятийный аппарат и терминологию основных закономерностей развития природы, человека и общества при формулировании и решении задач профессиональной деятельности
- У-2 Определять конкретные пути решения задач профессиональной деятельности на основе фундаментальных естественнонаучных знаний
- У-3 Использовать базовые знания естественнонаучных дисциплин в профессиональной деятельности
- П-1 Работая в команде, формулировать и решать задачи в рамках поставленного задания, относящиеся к области профессиональной деятельности
- П-2 Решать поставленные задачи, относящиеся к области профессиональной деятельности, на основе использования базовых знаний естественнонаучных дисциплин

1.5. Форма обучения

Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика (механика, электричество и магнетизм)

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Ноговицына Татьяна	кандидат физико-	Доцент	Кафедра физики
	Андреевна	математических		
		наук, без ученого		
		звания		
2	Повзнер Александр	доктор физико-	Заведующий	Кафедра физики
	Александрович	математических	кафедрой	
		наук, профессор		

Рекомендовано учебно-методическим советом института Фундаментального образования

Протокол № 9 от 12.05.2023 г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

Авторы:

- Ноговицына Татьяна Андреевна, Доцент, физики
- Повзнер Александр Александрович, Заведующий кафедрой, физики

1.1. Технологии реализации, используемые при изучении дисциплины модуля

- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания; Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание
1	Механика	Механическое движение. Материальная точка, система материальных точек, абсолютно твердое тело. Система отсчета. Кинематика и динамика материальной точки: Траектория, путь, перемещение. Скорость (средняя и мгновенная). Ускорение (среднее и мгновенное). Нормальное и тангенциальное (касательное) составляющие ускорения. Инертность, масса, импульс Сила. Инерциальные системы отсчета. Законы Ньютона Силы в механике: упругие силы, силы тяготения, силы трения. Работа и энергия. Закон сохранения энергии. Работа постоянной и переменной силы. Мощность. Кинетическая энергия механической системы и ее связь с работой сил, приложенных к системе. Консервативные и неконсервативные силы. Работа неконсервативной силы (на примере силы трения) Работа консервативной силы (на примере сил тяжести и упругости). Потенциальная энергия. Связь потенциальной энергии и работы консервативной силы. Полная механическая энергия. Законы сохранения и превращения механической энергии. Энергия как универсальная мера различных форм движения и взаимодействия.

		Закон сохранения импульса: Внешние и внутренние силы. Закон сохранения импульса. Соударения тел. Абсолютно упругое и абсолютно неупругое соударения.
		Вращательное движение абсолютно твердого тела: Элементы кинематики вращательного движения абсолютно твердого тела. Связь линейных и угловых кинематических величин. Момент инерции материальной точки. Момент инерции тела относительно оси вращения. Теорема Штейнера. Момент силы. Основное уравнение динамики вращательного движения относительно неподвижной оси. Мо-мент импульса материальной точки. Момент импульса тела. Закон сохранения момента импульса. Кинетическая энергия вращающегося тела. Работа при вращательном движении.
		Механические колебания: Понятие о колебательных процессах. Гармонические колебания. Параметры гармонических колебаний. Собственные механические колебания. Пружинный, математический маятники. Дифференциальное уравнение собственных колебаний и его решение. Полная энергия собственных механических колебаний и взаимное превращение кинетической и потенциальной
		энергий. Свободные затухающие механические колебания. Дифференциальное уравнение свободных затухающих колебаний на примере пружинного маятника и его решение.
2	Механические колебания и волны	Вынужденные механические колебания. Дифференциальное уравнение вынужденных колебаний. Резонанс.
		Векторная диаграмма. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения. Сложение взаимно перпендикулярных колебаний.
		Механические волны: Волновые процессы. Продольные и поперечные волны. Волновые поверхности. Фронт волны. Фазовая скорость, длина волны. Волновое число (волновой вектор). Уравнение синусоидальной волны. Энергия волны.
		Стоячие волны. Условие возникновения стоячей волны. Узлы и пучности. Колебания струны.
		Статистический и термодинамический методы исследования систем многих частиц.
3	Основы молекулярной физики	Основы молекулярно-кинетической теории: Постулаты молекулярно-кинетической теории. Идеальный газ. Опыт Штерна. Распределение Максвелла. Характеристические скорости. Статистический смысл температуры. Основное уравнение молекулярно-кинетической теории идеального газа для давления Газовые законы как следствие молекулярно-кинетической теории.
		Функция распределения Больцмана (по потенциальным энергиям): идеальный газ в поле тяготения. Барометрическая

формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле. Число степеней свободы молекулы. Закон равномерного распределения кинетической энергии по степеням свободы молекул. Внутренняя энергия идеального газа. Основы термодинамики: Работа газа при его расширении. Количество теплоты. Теплоемкость: удельная и молярная. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам и адиабатному процессу. Уравнения Пуассона. Зависимость теплоемкости идеального газа от вида процесса. Политропические процессы. Уравнение политропического процесса. Показатель политропы. Обратимые и необратимые процессы, круговые и некруговые процессы. Необратимость и направленность самопроизвольных процессов в замкнутых системах. Термодинамическая вероятность макросостояния. Энтропия. Расчет изменения энтропии с помощью интеграла приведенных теплот. Второе начало термодинамики. Различные формулировки второго начала термодинамики. Тепловые двигатели. КПД тепловых двигателей. Цикл Карно. Основы физической кинетики: Среднее число столкновений. Средняя длина свободного пробега и эффективный диаметр молекул, связь между ними. Вакуум. Молекулярно-кинетическая теория явлений переноса. Диффузия в газах. Уравнение Фика. Коэффициент диффузии. Теплопроводность газов. Уравнение Фурье. Коэффициент теплопроводности. Перенос импульса в газах. Уравнение переноса импульса. Коэффициент вязкости. Электростатика: Электрический заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции. Расчет напряженности электрического поля заряженных кольца и отрезка. Силовые линии электростатического поля и их свойства. Теорема Гаусса-Остроградского. Применение теоремы Гаусса-Электричество Остроградского для расчета полей от различных источников. Потенциальная энергия взаимодействия точечных зарядов. Потенциальный характер электростатического поля. Потенциал. Принцип суперпозиции для потенциала. Расчет потенциала поля, созданного диполем и заряженным кольцом. Работа сил электростатического поля. Эквипотенциальные поверхности.

Циркуляция вектора напряженности. Связь напряженности электростатического поля и потенциала. Электрическое поле и проводники: Электризация проводников. Равновесие зарядов на проводнике. Электрическое поле заряженного проводника. Распределение зарядов по поверхности проводника. Электроемкость: Электроемкость уединенного провод-ника. Взаимная емкость двух проводников. Конденсаторы. Энергия заряженного уединенного проводника и конденсатора. Энергия электростатического поля конденсатора. Объемная плотность энергии электростатического поля. Электрическое поле в диэлектриках: Полярные и не-полярные диэлектрики. Диполь в однородном и неоднородном электрическом поле. Потенциальная энергия диполя в электрическом поле. Поляризация диэлектриков. Диэлектрическая восприимчивость среды. Диэлектрическая проницаемость среды. Связь диэлектрической проницаемости и диэлектрической восприимчивости среды. Индукция электростатического поля. Теорема Гаусса для индукции поля. Сегнетоэлектрики. Пьезоэффект. Электрический ток: Постоянный электрический ток, его характеристики. Связь между плотностью тока и скоростью направленного движения носителей тока. Закон Ома для однородного участка цепи. Удельное сопротивления проводника и проводимость. Сторонние силы в электрической цепи. Источники тока. Электродвижущая сила. Напряжение на однородном участке цепи. Закон Ома для неоднородного участка цепи. Работа и мощность тока. Закон Джоуля-Ленца. Магнитное поле: Магнитное взаимодействие движущихся зарядов (токов). Опыт Эрстеда. Опыт Ампера. Индукция магнитного поля. Принцип суперпозиции. Силовые линии магнитного поля. Магнитное поле элемента тока. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа к расчету магнитных полей. 5 Магнитное поле Циркуляция вектора индукции магнитного поля. Теорема о циркуляции вектора индукции магнитного поля. Применение теоремы о циркуляции к расчету магнитного поля соленоида и тороида. Сила Ампера. Контур с током в однородном магнитном поле. Магнитный момент контура с током. Контур с током в неоднородном магнитном поле. Работа перемещения проводника и контура с током в магнитном поле. Поток вектора индукции магнитного поля. Теорема Гаусса для вектора

	индукции магнитного поля. Энергия контура с током в магнитном поле. Сила Лоренца. Движение заряженной частицы в магнит-ном
	Сила Лоренца. Движение заряженной частицы в магнит-ном
	поле. Эффект Холла. Магнитогидродинамические генераторы.
	Магнитное поле в веществе: Гипотеза Ампера. Намагниченность вещества. Магнитная восприимчивость. Индукция магнитного поля в веществе. Напряженность магнитного поля. Магнитная проницаемость среды. Связь магнитной проницаемости и магнитной восприимчивости среды. Теорема о циркуляции вектора напряженности магнитного поля.
	Эмпирическая классификация магнетиков по их свойствам: диамагнетики, парамагнетики, ферромагнетики. Орбитальный диамагнетизм. Орбитальный парамагнетизм. Магнитомеханические явления. Опыт Эйнштейна-де-Гааза. Ферромагнетизм. Теория молекулярного поля Вейсса. Точка Кюри. Закон Кюри-Вейсса. Антиферромагнетики. Ферримагнетики. Ферримагнетики.
	Релятивистская природа магнетизма.
	Электромагнитная индукция и самоиндукция: Явление электромагнитной индукции. Закон электромагнитной индукции и его вывод из закона сохранения энергии. Правило Ленца. Возникновение ЭДС индукции в проводнике, движущемся в магнитном поле; в рамке, равномерно вращающейся в однородном магнитном поле.
	Самоиндукция. Индуктивность контура и соленоида. Закон изменения тока при замыкании и размыкании электрической цепи.
тромагнитные явления	Энергия магнитного поля проводника с током. Объемная плотность энергии магнитного поля.
	Явление взаимной индукции. Коэффициент взаимной индукции.
	Электромагнитное поле: Вихревое электрическое поле. Ток смещения. Уравнения Максвелла для электромагнитного поля в интегральной и дифференциальной форме. Материальные уравнения. Единство и относительность электрического и магнитного полей.
ромагнитные колебания лны. Волновая оптика	Электромагнитные колебания: Электрический колебательный контур. Свободные электромагнитные колебания в закрытом колебательном контуре без активного сопротивления. Полная энергия свободных электромагнитных колебаний и взаимное превращение энергий электрического и магнитного полей. Затухающие электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс.
	ромагнитные колебания

		Электромагнитные волны: Волновое уравнение электромагнитной волны. Основные свойства электромагнитных волн. Энергия, импульс и интенсивность электро-магнитных волн. Вектор Пойтинга. Шкала электромагнитных волн. Волновая оптика: Природа света. Световая волна. Интерференция. Когерентность и монохроматичность волн. Пространственная и временная когерентность. Условия интерференции световых волн. Оптическая длина пути и оптическая разность хода волн. Способы получения
		когерентных источников света. Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Полосы равного наклона. Практическое применение интерференции. Интерферометры.
		Дифракция: Принцип Гюйгенса - Френеля. Зоны Френеля. Дифракция Френеля на круглом отверстии и диске. Зонная пластинка. Дифракция в параллельных лучах на одной щели. Дифракционная решетка. Дифракционные спектры.
		Поляризация света. Естественный и поляризованный свет. Виды поляризованного света. Поляризация света при отражении. Закон Брюстера. Анализ поляризованного света. Закон Малюса.
		Принцип относительности Галилея в классической механике. Постулаты специальной теории относительности и их экспериментальное обоснование. Преобразования Лоренца. Следствия преобразований Лоренца: относительность одновременности, относительность промежутков времени, относительность длин.
		Сложение скоростей и преобразование ускорений в теории относительности.
8	Элементы СТО	Релятивистский импульс. Основной закон релятивистской динамики материальной точки. Связь силы и ускорения в теории относительности
		Кинетическая энергия релятивистской частицы. Энергия покоя. Полная энергия частицы. Взаимосвязь массы и энергии. Связь между энергией и импульсом релятивистской частицы. Преобразования Лоренца для импульса и энергии.
		Границы применимости классической механики.
		Квантовая оптика:
9	Корпускулярно-волновой дуализм	Тепловое излучение: Энергетическая светимость. Спектральная плотность энергетической светимости. Абсолютно черное тело. Закон Кирхгофа. Законы Стефана-Больцмана и Вина. Распределение энергии в спектре излучения абсолютно черного тела. Формула Релея-Джинса, ультрафиолетовая

		катастрофа. Квантовая гипотеза излучения. Фотоны. Фор-мула Планка. Масса и импульс фотона. Законы Стефана-Больцмана и Вина, как следствие формулы Планка. Внешний фотоэффект: Фотоэлектрический эффект. Опыты Столетова. Экспериментальные законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Многофотонный фотоэффект. Тормозное рентгеновское излучение: коротковолновая граница сплошного рентгеновского спектра. Давление света. Эффект Комптона: Рассеяние фотонов на электронах вещества. Теория эффекта Комптона. Корпускулярно-волновая двойственность (дуализм) света, как обобщение опытных фактов. Волновые свойства микрочастиц: Корпускулярно-волновая двойственность частиц. Гипотеза де Бройля. Опытное подтверждение волновых свойств частиц вещества (опыты Девиссона и Джермера, Томсона и Тартаковского). Принцип неопределенности как проявление волновых свойств частиц. Соотношение неопределенностей Гейзенберга. Вероятностная трактовка волн де Бройля. Волновая функция. Уравнение Шредингера. Стационарные состояния. Задача о свободной квантово-механической частице. Задача о квантовомеханической частице в бесконечно глубокой прямоугольной потенциальной яме. Квантование энергии и импульса частицы, как следствие ее волновых свойств (стоячие волны). Квантово-механическая задача о гармоническом осцилляторе.
10	Элементы физики атома	Туннельный эффект (коэффициент прозрачности). Электронные состояния в атоме: Закономерности в атомных спектрах. Постулаты Бора. Квантово-механическая задача об атоме (на примере атома водорода). Квантование энергетического спектра электрона в атоме. Главное квантовое число. Орбитальное и магнитное квантовые числа. Опыт Штерна и Герлаха. Спин электрона. Спиновое квантовое число. Принцип Паули. Распределение электро-нов в атоме по состояниям. Характеристическое рентгеновское излучение: характеристический рентгеновский спектр. Закон Мозли. Вынужденное (индуцированное) излучение. Гелий-неоновый лазер.
11	Элементы ядерной физики	Характеристики атомного ядра: заряд, масса, размер, плотность. Массовое и зарядовое числа Состав ядра. Нуклоны. Изотопы, изотоны и изобары.

Взаимодействие нуклонов. Свойства и природа ядерных сил. Дефект массы и энергия связи ядер.
Радиоактивность. Закономерности и природа альфа, бета- и гамма - излучений атомных ядер. Кинетический закон радиоактивного распада. Постоянная радиоактивного распада. Активность. Классификация элементарных частиц.

1.3. Направление, виды воспитательной деятельности и используемые технологии

Таблица 1.2

Направление воспитательной деятельности	Вид воспитательной деятельности	Технология воспитательной деятельности	Компетенция	Результаты обучения
Профессиональн ое воспитание	профориентацио нная деятельность	технология самостоятельной работы	ОПК-1 - Способен использовать базовые знания естественнонаучны х дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментальног о исследования	3-2 - Обосновать значимость использования базовых фундаментальных и естественнонаучных дисциплин в формулировании и решении задач профессиональной деятельности У-2 - Определять конкретные пути решения задач профессиональной деятельности на основе фундаментальных естественнонаучных знаний П-1 - Работая в команде, формулировать и решать задачи в рамках поставленного задания, относящиеся к области профессионально

		й деятельности

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика (механика, электричество и магнетизм)

Электронные ресурсы (издания)

- 1. Савельев, И. В.; Курс общей физики; Наука, Москва; 1970; https://biblioclub.ru/index.php?page=book&id=494689 (Электронное издание)
- 2. Савельев, И. В., Енковский, Л. Л.; Курс общей физики; Наука, Москва; 1970; https://biblioclub.ru/index.php?page=book&id=483316 (Электронное издание)
- 3. Савельев, И. В.; Курс общей физики; Наука, Москва; 1970; https://biblioclub.ru/index.php?page=book&id=477374 (Электронное издание)
- 4. Малышев, Л. Г.; Избранные главы курса физики: колебания и волны: учебное пособие.; Издательство Уральского университета, Екатеринбург; 2017; https://biblioclub.ru/index.php?page=book&id=695490 (Электронное издание)
- 5. Малышев, Л. Г.; Избранные главы курса физики: Молекулярная физика и термодинамика : учебное пособие.; Издательство Уральского университета, Екатеринбург; 2020; https://biblioclub.ru/index.php?page=book&id=699063 (Электронное издание)

Печатные издания

- 1. Савельев, И. В.; Курс общей физики : учеб. пособие для втузов : в 3 т. Т. 1. Механика. Молекулярная физика; Наука, Москва; 1987 (27 экз.)
- 2. Савельев, Свавельев, И. В.; Курс общей физики: Учеб. пособие для втузов: В 3 т. Т. 2. Электричество и магнетизм. Волны. Оптика; Наука, Москва; 1988 (31 экз.)
- 3. Чертов, А. Г., Воробьев, А. А.; Задачник по физике : учеб. пособие для втузов.; Физматлит, Москва; 2003 (524 экз.)
- 4. Иродов, И. Е.; Задачи по общей физике: учеб. пособие для вузов.; Наука, Москва; 1988 (89 экз.)
- 5. Детлаф, А. А., Яворский, Б. М.; Курс физики : Учеб. пособие для студентов втузов.; Академия, Москва; 2003 (71 экз.)
- 6. Малышев, Л. Г.; Избранные главы курса физики: электромагнетизм: учебное пособие для студентов, обучающихся по дисциплине "Физика".; Издательство Уральского университета, Екатеринбург; 2014 (25 экз.)

Профессиональные базы данных, информационно-справочные системы

- 1. Валишев М.Г. Конспект лекций по физике: учебное пособие / М.Г. Валишев, А.А. Повзнер. - Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2009. Режим доступа: http://study.urfu.ru/Aid/ViewMeta/8872
- 2. Повзнер А.А. Виртуальный лабораторный практикум по физике. Часть І: ЭОР УрФУ, тип: УМК / А.А.Повзнер, А.Н. Филанович. Екатеринбург: УрФУ, 2016. Режим доступа: http://study.urfu.ru/Aid/ViewMeta/13446
- 3. Степаненко А.В. Механика и молекулярная физика. Материалы для подготовки к лабораторному практикуму: ЭОР УрФУ. Тип: ЭИ. / Степаненко А.В., Филанович А.Н. Екатеринбург: УрФУ, 2018. Режим доступа: http://study.urfu.ru/Aid/ViewMeta/13756

- 4. Гук В.Г. Методика подготовки студентов к лабораторному практикуму по оптике. Дифракция света: ЭОР УрФУ. Тип: ЭИ. / Гук В.Г., Папушина Т.И. Екатеринбург: УрФУ, 2019. Режим доступа: http://study.urfu.ru/Aid/ViewMeta/13780
- 5. Бункин А.Ю. Графические методы обработки результатов измерений в учебной физической лаборатории: ЭОР УрФУ. Тип: ЭИ. / Бункин А.Ю., Ватолина Н.Д., Михалева О.В. Екатеринбург: УрФУ, 2019. Режим доступа: http://study.urfu.ru/Aid/ViewMeta/13937
- 6. Бункин А.Ю. Лабораторный практикум по электромагнетизму. Материалы для самостоятельной подготовки : ЭОР УрФУ. Тип: ЭИ. / Бункин А.Ю., Ватолина Н.Д., Гущин В.С., Михалева О.В. Екатеринбург: УрФУ, 2019. Режим доступа: https://study.urfu.ru/Aid/ViewMeta/13936
- 7. Гук В.Г. Интерференция света: ЭОР УрФУ. Тип: ЭИ. / Гук В.Г., Папушина Т.И. Екатеринбург: УрФУ, 2018. Режим доступа https://study.urfu.ru/Aid/ViewMeta/13747
- 8. Зайцева Н.А. Подготовка к лабораторному практикуму по ядерной физике: ЭОР УрФУ. Тип: ЭИ. / Зайцева Н.А., Филанович А.Н. Екатеринбург: УрФУ, 2019. Режим доступа: https://study.urfu.ru/Aid/ViewMeta/13827
- 9. Гук В.Г. Тесты по физике для контроля подготовки студентов к занятиям: ЭОР УрФУ, Тип: ЭИ / Гук В.Г., Левченко В.П. Екатеринбург: УрФУ, 2018. Режим доступа: https://study.urfu.ru/Aid/ViewMeta/13719
- 10. Гук В.Г. Тесты по физике для контроля подготовки студентов к занятиям: ЭОР УрФУ, Тип: ЭИ / Гук В.Г., Левченко В.П. Екатеринбург: УрФУ, 2019. Режим доступа: https://study.urfu.ru/Aid/ViewMeta/13873
- 11. Левченко В.П. Определение плотности тел правильной геометрической формы: методические указания к лабораторной работе № 1 по физике для всех направлений подготовки, всех форм обучения/ В.П. Левченко, В.С. Черняев, Е.Д. Плетнева, А.Г. Волков— Екатеринбург: УрФУ, 2017. 17 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/1.pdf
- 12. Грищенко С.В. Исследование теплопроводности газов. Определение эффективного диаметра и длины свободного пробега молекул: методические указания к лабораторной работе № 3 по физике / С.В. Грищенко, А.А. Повзнер. Екатеринбург : УрФУ, 2016.-16с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/new/3.pdf
- 13. Левченко В.П. Измерение коэффициента вязкости жидкости: методические указания к лабораторной работе № 4 по физике / В.П. Левченко, В.Б. Демин. Екатеринбург: УрФУ, 2017. -20с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/new/4.pdf
- 14. Левченко В.П. Определение ускорения свободного падения с помощью оборотного маятника : методические указания к лабораторной работе № 5 по физике / сост. В. П. Левченко, В. Б. Демин, Ю. Н. Гук и др. Екатеринбург : УрФУ, 2012. 15 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/5.pdf
- 15. Повзнер А.А. Определение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме: методические указания к лабораторной работе № 7 по физике /А.А. Повзнер, А.Н. Филанович, А.А. Сабирзянов. Екатеринбург. : УрФУ, 2021. -19с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/new/7.pdf
- 16. Башкатов А.Н. Определение молярной массы воздуха: методические указания к лабораторной работе № 8 по физике / А.Н. Башкатов, В.П. Левченко, Н.Б. Пушкарева Екатеринбург. : УрФУ, 2015. 12 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/8.pdf
- 17. Зайцева Н.А. Изучение законов вращательного движения на маятнике Обербека: методические указания к лабораторной работе № 9 по физике : ЭОР УрФУ, Тип: ЭИ / Зайцева Н.А., Повзнер А.А.,

- Шмакова К.Ю., Шумихина К.А. Екатеринбург: Ур Φ У, 2019. Режим доступа: https://study.urfu.ru/Aid/ViewMeta/13945
- 18. Карпов Ю.Г. Опытная проверка распределения Максвелла: методические указания к лабораторной работе № 10 по физике / Ю.Г. Карпов, А.Н. Филанович, В.П. Левченко, А.А. Екатеринбург. : УрФУ, 2015. 19 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/10.pdf
- 19. Карпов Ю.Г. Измерение сопротивления металлического проводника: методические указания к лабораторной работе №12 по физике / Ю.Г. Карпов. Екатеринбург: УрФУ, 2018.- 18c. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/new/12.pdf
- 20. Карпов Ю.Г. Определение электродвижущей силы и внутреннего сопротивления источника тока компенсационным методом: методические указания к лабораторной работе № 13 по физике / Ю.Г. Карпов Екатеринбург: УрФУ, 2010. 12 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/13.pdf
- 21. Карпов Ю.Г. Сложение электрических колебаний: методические указания к лабораторной работе № 15 по физике / Ю.Г. Карпов, А.Н. Филанович, В.С. Черняев, Н.Д. Ватолина Екатеринбург. : УрФУ, 2012. 21 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/15.pdf
- 22. Карпов Ю.Г. Изучение магнитного поля Земли: методические указания к лабораторной работе № 16 по физике / Ю.Г. Карпов, В.С. Гущин, А.Ю. Бункин. Екатеринбург: УГТУ-УПИ, 2012.— 18с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/16.pdf
- 23. Карпов Ю.Г. Изучение затухающих электромагнитных колебаний: методические указания к лабораторной работе № 17 по физике / Ю.Г. Карпов, В.С. Черняев, Н.Д. Ватолина, С.М. Подгорных Екатеринбург: УрФУ, 2012. 23 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/17.pdf
- 24. Карпов Ю.Г. Изучение магнитных полей и свойств ферромагнетика : методические указания к лабораторной работе № 18 по физике / Ю.Г. Карпов, А.Н. Филанович, С.М. Подгорных, А.Ю. Бункин Екатеринбург : УрФУ, 2012. 20 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/18.pdf
- 25. Папушина Т.И. Определение длины световой волны с помощью бипризмы френеля: методические указания к лабораторной работе 22 по физике/ Папушина Т.И., Ходак Е.А. / Екатеринбург: УрФУ, 2015. 21 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/22.pdf
- 26. Истомина 3.А. Изучение дифракции и поляризации лазерного излучения : методические указания к лабораторной работе № 23 / сост. 3. А. Истомина, Т. И. Папушина, А.В. Михельсон. Екатеринбург : $Vp\Phi Y$, 2015. 22 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/23.pdf
- 27. Повзнер А.А. Определение постоянной Планка спектроскопическим методом: методические указания к лабораторной работе № 24 / Повзнер А.А., Гук В.Г., Ходак Е.А., Московских О.П. Екатеринбург: УрФУ, 2017. 17c. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/24.pdf
- 28. Папушина Т.И. Определение длины волны света при помощи колец Ньютона: методические указания к лабораторной работе № 26 по физике / Т.И. Папушина, А.В. Михельсон, Екатеринбург: УрФУ, 2010. 20 с. Режим доступа: http://kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/26.pdf
- 29. Папушина Т.И. Получение и исследование поляризованного света: Методические указания к лабораторной работе 27 по физике / сост. Папушина Т.И, Филанович А.Н., Гук В.Г. Екатеринбург: УрФУ, 2017, 21 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/27.pdf

- 30. Ермаков А.Ф. Измерение удельного заряда электрона методом магнетрона: методические указания к лабораторной работе № 28 по физике / А.Ф. Ермаков, Ю.Г. Карпов, В.С. Черняев, А.Н. Филанович, Екатеринбург : УрФУ, 2015. 13 с. Режим доступа: http://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/28.pdf
- 31. Папушина Т.И. Изучение дифракционных решеток. Определение длины световой волны с помощью дифракционной решетки : методические указания к лабораторной работе № 29 / сост. Т. И. Папушина, 3. А. Истомина, А.В. Михельсон. Екатеринбург : УрФУ, 2016. 20 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/29.pdf
- 32. Малышев Л.Г. Исследование полупроводникового резистора: методические указания к лабораторной работе № 33 по физике /Л.Г. Малышев , А.В. Мелких , А.А. Повзнер , А.Н. Филанович , О.В. Аношина. Екатеринбург : УрФУ , 2017. -15c. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/new/33.pdf
- 33. Карпов Ю.Г. Исследование эффекта Холла в полупроводниках: методические указания к лабораторной работе №35 по физике / Ю.Г. Карпов, А.Н. Филанович. Екатеринбург: УрФУ, 2016. 22c. Режим доступа https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/35.pdf
- 34. Карпов Ю.Г. Изучение электрических свойств полупроводникового диода: методические указания к лабораторной работе №36 по физике / Ю.Г. Карпов, А.Н. Филанович, Л.Г. Малышев, О.А. Чикова, К.Ю. Шмакова Екатеринбург.: УрФУ, 2017. 23с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user upload/site 62 6389/pdf/new/36.pdf
- 35. Зайцева Н.А. Исследование альфа-распада радиоактивного изотопа плутония: методические указания к лабораторной работе № 40 / сост. Н. А. Зайцева, А. Н. Филанович. Екатеринбург: УрФУ, 2017. 19 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/40.pdf
- 36. Клименков А.А. Измерение коэффициента поглощения гамма-излучения: методические указания к лабораторной работе № 41 по курсу «Физика» / сост. А. А. Клименков. Екатеринбург: УРФУ, 2017. 16 с. Режим доступа: https://kf-info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/new/41.pdf

Материалы для лиц с **ОВ**3

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

- 1. ЭБС "Лань" Издательство "Лань" http://e.lanbook.com/
- 2. http://lib.urfu.ru/ зональная научная библиотека УрФУ
- 3. https://openedu.urfu.ru/minors/ образовательный портал УрФУ.
- 4. http://www.intuit.ru/ Национальный Открытый университет «Интуит».
- 5. https://www.coursera.org/ массовые открытые онлайн-курсы;
- 6. https://www.edx.org/ массовые открытые онлайн-курсы;
- 7. https://openedu.ru/ национальная платформа открытого образования;

- 8. http://www.yandex.ru поисковая система Яндекс
- 9. http://www.google.com поисковая система Google

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Физика (механика, электричество и магнетизм)

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	Office Professional 2003 Win32 Russian CD-ROM National Instruments LabVIEW (Lab VIEW Academic Standart Suite)
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами Подключение к сети Интернет	Office Professional 2003 Win32 Russian CD-ROM National Instruments LabVIEW (Lab VIEW Academic Standart Suite)
3	Лабораторные занятия	Мебель аудиторная с количеством рабочих мест в	National Instruments LabVIEW (Lab VIEW Academic Standart Suite)

,			
		соответствии с количеством студентов	
		Рабочее место преподавателя	
		Периферийное устройство	
		Персональные компьютеры по количеству обучающихся	
		Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	
		Подключение к сети Интернет	
4 Ко	нсультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Не требуется
		Рабочее место преподавателя	
пр	кущий контроль и омежуточная гестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM
		Персональные компьютеры по количеству обучающихся	
		Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	
		Подключение к сети Интернет	
	мостоятельная бота студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов	Office Professional 2003 Win32 Russian CD-ROM
		Персональные компьютеры по	
		количеству обучающихся	