Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

УТВЕРЖДАЮ		
иректор по образовательной	Ді	
деятельности		
С.Т. Князев		
С.1. Кимось		

РАБОЧАЯ ПРОГРАММА МОДУЛЯ

Код модуля	Модуль
1161079	Методы получения наноматериалов

Екатеринбург

Перечень сведений о рабочей программе модуля	Учетные данные
Образовательная программа	Код ОП
1. Материалы и технологии водородной энергетики	1. 22.04.01/33.07
Направление подготовки	Код направления и уровня подготовки
1. Материаловедение и технологии материалов	1. 22.04.01

Программа модуля составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Тарасова Наталия	доктор	Доцент	физической и
	Александровна	химических		неорганической химии
		наук, доцент		
2	Туленин	кандидат	Доцент	физической и
	Станислав	химических		коллоидной химии
	Сергеевич	наук, без		
		ученого звания		

Согласовано:

Управление образовательных программ

Р.Х. Токарева

1. ОБЩАЯ ХАРАКТЕРИСТИКА МОДУЛЯ Методы получения наноматериалов

1.1. Аннотация содержания модуля

Модуль представлен дисциплиной «Методы получения тонкопленочных и объемных наноматериалов», в рамках которой представлены основные методы и технологии получения наноматериалов на основе рационального использования сырья и энергии.

1.2. Структура и объем модуля

Таблица 1

№ п/п	Перечень дисциплин модуля в последовательности их освоения	Объем дисциплин модуля и всего модуля в зачетных единицах
1	Методы получения тонкопленочных и объемных наноматериалов	6
	ИТОГО по модулю:	6

1.3.Последовательность освоения модуля в образовательной программе

Пререквизиты модуля	1. Физико-химические свойства материалов
Постреквизиты и кореквизиты	1. Материалы и устройства водородной
модуля	энергетики

1.4. Распределение компетенций по дисциплинам модуля, планируемые результаты обучения (индикаторы) по модулю

Таблица 2

Перечень дисциплин модуля	Код и наименование компетенции	Планируемые результаты обучения (индикаторы)
1	2	3
Методы получения тонкопленочных и объемных наноматериалов	ОПК-1 - Способен формулировать и решать научно- исследовательские, технические, организационно- экономические и комплексные задачи, применяя фундаментальные знания	3-1 - Соотносить проблемную область с соответствующей областью фундаментальных и общеинженерных наук 3-2 - Привести примеры терминологии, принципов, методологических подходов и законов фундаментальных и общеинженерных наук, применимых для формулирования и решения задач проблемной области знания

- У-1 Использовать для формулирования и решения задач проблемной области терминологию, основные принципы, методологические подходы и законы фундаментальных и общеинженерных наук У-2 - Критически оценить возможные способы решения задач проблемной области, используя знания фундаментальных и общеинженерных наук П-1 - Работая в команде, разрабатывать варианты формулирования и решения научно-исследовательских, технических, организационно-экономических и комплексных задач, применяя знания фундаментальных и общеинженерных наук Д-1 - Проявлять лидерские качества и умения командной работы 3-1 - Перечислить показатели эффективности научно-исследовательских работ в области создания материалов для водородной энергетики 3-2 - Демонстрировать знание отечественной и международной нормативной документации, патентов и стандартов в области создания материалов для водородной энергетики У-1 - Выбирать оптимальные методы и способы создания материалов для водородной энергетики с заданным комплексом свойств с учетом рационального расходования основных и вспомогательных материалов и экологических последствий применения
- ПК-1 Способен осуществлять, организовывать и координировать научно-исследовательскую работу по созданию и исследованию материалов для водородной энергетики и изделий из них

- У-2 Анализировать результаты научноисследовательских работ в области создания материалов для водородной энергетики и оценивать эффективность научноисследовательских работ на основе установленных показателей
- П-1 Проводить оценку эффективности научно-исследовательских работ в области создания материалов для водородной энергетики и оформлять в соответствии с требованиями отчеты/презентации по

	розуни тотом номино нааналаратану зулуу
	результатам научно-исследовательских работ
	paoor
	П-2 - В соответствии с заданием
	планировать этапы проведения и проводить
	прикладные научные исследования и
	испытания в области создания и
	исследования материалов для водородной
	энергетики, обработку и анализ их
	результатов
ПК-6 - Способность	3-1 - Рекомендовать методы контроля и
осуществлять	измерения свойств материалов
рациональное	
расходование	3-2 - Перечислить основные операции
материалов,	контроля и измерения свойств материалов
используемых в	У-1 - Обосновать выбор методов контроля и
операциях контроля,	измерения свойств материалов
измерения свойств и	V 2 II
испытания основных,	У-2 - Настраивать оборудование,
вспомогательных и	используемое при измерениях свойств
расходных материалов	материалов
	П-1 - Осуществлять подбор методик
	контроля и измерения свойств основных,
	вспомогательных и расходных материалов с
	учетом их рационального расходования и
	экологических последствий применения

1.5. Форма обучения Обучение по дисциплинам модуля может осуществляться в очной формах.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Методы получения тонкопленочных и объемных наноматериалов

Рабочая программа дисциплины составлена авторами:

№ п/п	Фамилия Имя Отчество	Ученая степень, ученое звание	Должность	Подразделение
1	Тарасова Наталия	доктор	Доцент	физической и
	Александровна	химических наук,		неорганической
		доцент		химии
2	Туленин Станислав	кандидат	Доцент	физической и
	Сергеевич	химических наук,		коллоидной
		без ученого		химии
		звания		

Рекомендовано учебно-методическим советом института Химико-технологический

Протокол № $\underline{6}$ от $\underline{15.06.2022}$ г.

1. СОДЕРЖАНИЕ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ Авторы:

- Тарасова Наталия Александровна, Доцент, физической и неорганической химии
- Туленин Станислав Сергеевич, Доцент, физической и коллоидной химии
 - 1.1. Технологии реализации, используемые при изучении дисциплины модуля
- Традиционная (репродуктивная) технология
- Разноуровневое (дифференцированное) обучение
 - о Базовый уровень

*Базовый I уровень — сохраняет логику самой науки и позволяет получить упрощенное, но верное и полное представление о предмете дисциплины, требует знание системы понятий, умение решать проблемные ситуации. Освоение данного уровня результатов обучения должно обеспечить формирование запланированных компетенций и позволит обучающемуся на минимальном уровне самостоятельности и ответственности выполнять задания; Продвинутый II уровень — углубляет и обогащает базовый уровень как по содержанию, так и по глубине проработки материала дисциплины. Это происходит за счет включения дополнительной информации. Данный уровень требует умения решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий. Освоение данного уровня результатов обучения позволит обучающемуся повысить уровень самостоятельности и ответственности до творческого применения знаний и умений.

1.2. Содержание дисциплины

Таблица 1.1

Код раздела, темы	Раздел, тема дисциплины*	Содержание	
1	Физическая химия поверхности твердых тел	Поверхностная энергия. Химический потенциал как функция поверхности кривизны. Электростатическая стабилизация. Стерическая стабилизация.	
2	Нульмерные структуры	Формирование наночастиц посредством гомогенной нуклеации. Формирование наночастиц посредством гетерогенной нуклеации. Кинетически-ограниченный синтез наночастиц.	
3	Одномерные наноструктуры	Самопроизвольные рост нанонитей и наностержней. Механизмы роста. Матричный синтез. Электрохимическое и электрофоретическое осаждение. Электроформование волок Литография.	
4	Двумерные наноструктуры	Основы роста тонких пленок. Вакуумные технологии. Физическое осаждение их газовой фазы, его типы и их сравнение. Химическое осаждение из газовой фазы. Кинетика реакций. Явления переноса. Осаждение атомных слоев. Самосборка. Электрохимическое осаждение. Золь-гель пленки.	
5	Примеры наноматериалов	Микро- и мезопористые материалы. Структуры «ядро в оболочке». Интеркаляционные соединения. Нанокомпозиты и нанозернистые материалы	

6	Физические методы получения наноматериалов	Литография. Фотолитография. Электронно-лучевая литография. Рентгеновская литография. Лиотграфия с использованием сфоуцсированного ионного пучка. Наноманипуляции и нанолитография. Мягкая литография. Сборка наночастиц и нанонитей
7	Исследование структуры и свойств наноматериалов	Дифракционные методы. Методы электронной микроскопии. Химическая диагностика. Физические свойства наноматериалов. Механические свойства. Оптические свойства. Электропроводность
8	Применение наноматериалов	Молекулярная электроника и наноэлектроника. Биологическое применение наночастиц. Наномеханика. Применение наноматериалов в энергетике

1.3. Направление, виды воспитательной деятельности и используемые технологии

Направления воспитательной деятельности сопрягаются со всеми результатами обучения компетенций по образовательной программе, их освоение обеспечивается содержанием всех дисциплин модулей.

1.4. Программа дисциплины реализуется на государственном языке Российской Федерации.

2. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Методы получения тонкопленочных и объемных наноматериалов

Электронные ресурсы (издания)

- 1. Гусев, А. И.; Наноматериалы, наноструктуры, нанотехнологии : монография.; Физматлит, Москва; 2009; https://biblioclub.ru/index.php?page=book&id=68859 (Электронное издание)
- 2. Елисеев, А. А.; Функциональные наноматериалы : учебное пособие.; Физматлит, Москва; 2010; https://biblioclub.ru/index.php?page=book&id=68876 (Электронное издание)
- 3. Илюшин, В. А.; Наноматериалы : учебное пособие.; Новосибирский государственный технический университет, Новосибирск; 2019; https://biblioclub.ru/index.php?page=book&id=574749 (Электронное издание)

Печатные издания

- 1. Рыжонков, Д. И., Левина, В. В., Дзидзигури, Э. Л.; Наноматериалы : учеб. пособие.; БИНОМ. Лаборатория знаний, Москва; 2008 (6 экз.)
- 2. Рыжонков, Д.И.; Наноматериалы : учеб. пособие.; БИНОМ. Лаборатория знаний, Москва; 2012 (5 экз.)
- 3. Раков, Э. Г.; Неорганические наноматериалы : учебное пособие для вузов.; БИНОМ. Лаборатория знаний, Москва; [2013] (5 экз.)

Профессиональные базы данных, информационно-справочные системы

Не используются

Материалы для лиц с ОВЗ

Весь контент ЭБС представлен в виде файлов специального формата для воспроизведения синтезатором речи, а также в тестовом виде, пригодном для прочтения с использованием экранной лупы и настройкой контрастности.

Базы данных, информационно-справочные и поисковые системы

Не используются

3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Методы получения тонкопленочных и объемных наноматериалов

Сведения об оснащенности дисциплины специализированным и лабораторным оборудованием и программным обеспечением

Таблица 3.1

№ п/п	Виды занятий	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения
1	Лекции	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Периферийное устройство Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами Подключение к сети Интернет	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Браузер Google Chrome или Mozilla
2	Практические занятия	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Периферийное устройство Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES

3	Консультации	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	Не требуется
4	Текущий контроль и промежуточная аттестация	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Рабочее место преподавателя Доска аудиторная Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами	Не требуется
5	Самостоятельная работа студентов	Мебель аудиторная с количеством рабочих мест в соответствии с количеством студентов Периферийное устройство Оборудование, соответствующее требованиям организации учебного процесса в соответствии с санитарными правилами и нормами Подключение к сети Интернет	Microsoft Windows 8.1 Pro 64-bit RUS OLP NL Acdmc Office 365 EDUA5 ShrdSvr ALNG SubsVL MVL PerUsr B Faculty EES Браузер Google Chrome или Mozilla